827
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Twinning-mediated plasticity by a novel multistage twinning mode in an Mg-Al-Gd alloy

, , , , , , , & show all
Pages 933-941 | Received 23 Aug 2023, Published online: 06 Oct 2023

References

  • Shi Q, Natarajan AR, Van der Ven A, et al. Partitioning of Ca to metastable precipitates in a Mg-rare earth alloy. Mater Res Lett. 2022;11(3):222–230. doi:10.1080/21663831.2022.2138724
  • Zhu G, Wang L, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates. Acta Mater. 2020;200:236–245. doi:10.1016/j.actamat.2020.09.006
  • Wang JY, Li N, Alizadeh R, et al. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys. Acta Mater. 2019;170:155–165. doi:10.1016/j.actamat.2019.03.027
  • Zha M, Ma X, Jia H-L, et al. Dynamic precipitation and deformation behaviors of a bimodal-grained WE43 alloy with enhanced mechanical properties. Int J Plast. 2023;167:103682. doi:10.1016/j.ijplas.2023.103682
  • Sahoo SK, Biswas S, Toth LS, et al. Strain hardening, twinning and texture evolution in magnesium alloy using the all twin variant polycrystal modelling approach. Int J Plast. 2020;128:102660. doi:10.1016/j.ijplas.2020.102660
  • Sahoo SK, Toth LS, Biswas S. An analytical model to predict strain-hardening behaviour and twin volume fraction in a profoundly twinning magnesium alloy. Int J Plast. 2019;119:273–290. doi:10.1016/j.ijplas.2019.04.007
  • Gong MY, Xu S, Jiang YY, et al. Structural characteristics of 10–12 non-cozone twin-twin interactions in magnesium. Acta Mater. 2018;159:65–76. doi:10.1016/j.actamat.2018.08.004
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57(1):1–62. doi:10.1016/j.pmatsci.2011.05.001
  • Gong M, Hirth JP, Liu Y, et al. Interface structures and twinning mechanisms of twins in hexagonal metals. Mater Res Lett. 2017;5(7):449–464. doi:10.1080/21663831.2017.1336496
  • Hu Y, Turlo V, Beyerlein IJ, et al. Disconnection-mediated twin embryo growth in Mg. Acta Mater. 2020;194:437–451. doi:10.1016/j.actamat.2020.04.010
  • Yaddanapudi K, Leu B, Kumar MA, et al. Accommodation and formation of 10–12 twins in Mg-Y alloys. Acta Mater. 2021;204:116514. doi:10.1016/j.actamat.2020.116514
  • He C, Li Z, Kong D, et al. Origin of profuse 11–21 deformation twins in Mg-Gd alloys. Scr Mater. 2021;191:62–66. doi:10.1016/j.scriptamat.2020.08.041
  • Zhang H, Li Y, Ding Z, et al. Origin of twin-like 33–64 tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy. Scr Mater. 2021;201:113982. doi:10.1016/j.scriptamat.2021.113982
  • Cayron C. The (11–22) and (-12–16) twinning modes modelled by obliquity correction of a (58°, a+2b) prototype stretch twin. Acta Crystallogr. 2018;74:44–53.
  • Andriy Ostapovets JB, Krahula K, Král L, et al. On the relationship between 11–26 and 11–22 conjugate twins and double extension twins in rolled pure Mg. Philos Mag A. 2017;97:1088–1101. doi:10.1080/14786435.2017.1290846
  • Gao Y, Zhao L, Zha M, et al. Twinning-induced plasticity with multiple twinning modes and disclinations in Mg alloys. Int J Plast. 2023;164:103595. doi:10.1016/j.ijplas.2023.103595
  • Bilby BA, Crocker AG. The theory of the crystallography of deformation twinning. Royal Soc. 1965;288:240–255.
  • YOO MH. Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A. 1981;12A:409–418.
  • Jahedi M, McWilliams BA, Moy P, et al. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution. Acta Mater. 2017;131:221–232. doi:10.1016/j.actamat.2017.03.075
  • Ghaderi A, Barnett MR. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 2011;59(20):7824–7839. doi:10.1016/j.actamat.2011.09.018
  • Bu F, Yang Q, Qiu X, et al. Study on the assemblage of Y and Gd on microstructure and mechanical properties of hot extruded Mg-Al-Zn alloy. Mat Sci Eng a-Struct. 2015;639:198–207. doi:10.1016/j.msea.2015.05.008
  • Go J, Lee JH, Yu H, et al. Significant improvement in the mechanical properties of an extruded Mg–5Bi alloy through the addition of Al. J Alloy Compd. 2020;821:153442. doi:10.1016/j.jallcom.2019.153442
  • Wang K, Wang J, Huang S, et al. Formation of an abnormal texture in Mg-Gd-Y-Zn-Mn alloy and its effect on mechanical properties by altering extrusion parameters. Mat Sci Eng a-Struct. 2022;831:142270. doi:10.1016/j.msea.2021.142270
  • Gengor G, Mohammed ASK, Sehitoglu H. 10–12 twin interface structure and energetics in HCP materials. Acta Mater. 2021;219:117256. doi:10.1016/j.actamat.2021.117256
  • Li Z, Zhang J, Zhai Y, et al. Dynamic mechanisms of strengthening and softening of coherent twin boundary via dislocation pile-up and cross-slip. Mater Res Lett. 2022;10(8):539–546. doi:10.1080/21663831.2022.2065892
  • Jeong J, Alfreider M, Konetschnik R, et al. In-situ TEM observation of 10–12 twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency. Acta Mater. 2018;158:407–421. doi:10.1016/j.actamat.2018.07.027
  • Ma L, Xie K, Cai J, et al. Non-dissociated <c+a> dislocations in an AZ31 alloy revealed by transmission electron microscopy. Mater Res Lett. 2020;8(4):145–150. doi:10.1080/21663831.2020.1721586
  • Lu SH, Wu D, Chen RS, et al. Reasonable utilization of 10–12 twin for optimizing microstructure and improving mechanical property in a Mg-Gd-Y alloy. Mater Des. 2020;191:108600. doi:10.1016/j.matdes.2020.108600
  • Han G, Noh Y, Chaudry UM, et al. 10–12 extension twinning activity and compression behavior of pure Mg and Mg-0.5Ca alloy at cryogenic temperature. Mat Sci Eng a-Struct. 2022;831:142189. doi:10.1016/j.msea.2021.142189
  • Zhou X, Su H, Ye H, et al. Removing basal-dissociated <c+a> dislocations by 10–12 deformation twinning in magnesium alloys. Acta Mater. 2021;217:117170. doi:10.1016/j.actamat.2021.117170
  • Molodov KD, Al-Samman T, Molodov DA, et al. On the twinning shear of 10–12 twins in magnesium—experimental determination and formal description. Acta Mater. 2017;134:267–273. doi:10.1016/j.actamat.2017.05.041
  • Meyers MA, Vohringer O, Lubarda VA. The onset of twinning in metals: a constitutive description. Acta Mater. 2001;49(19):4025–4039. doi:10.1016/S1359-6454(01)00300-7
  • Capolungo L, Marshall PE, McCabe RJ, et al. Nucleation and growth of twins in Zr: a statistical study. Acta Mater. 2009;57(20):6047–6056. doi:10.1016/j.actamat.2009.08.030
  • Orozco-Caballero A, Lunt D, Robson JD, et al. How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation study. Acta Mater. 2017;133:367–379. doi:10.1016/j.actamat.2017.05.040
  • Agnew SR, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast. 2005;21(6):1161–1193. doi:10.1016/j.ijplas.2004.05.018
  • Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003;51(7):2055–2065. doi:10.1016/S1359-6454(03)00005-3
  • Ovri H, Markmann J, Barthel J, et al. Mechanistic origin of the enhanced strength and ductility in Mg-rare earth alloys. Acta Mater. 2023;244:118550. doi:10.1016/j.actamat.2022.118550
  • Wang T, Zha M, Du C, et al. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Mater Res Lett. 2022;11(3):187–195. doi:10.1080/21663831.2022.2133976
  • Li RG, Yan Y, Pan HC, et al. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters. Mater Res Lett. 2022;10(10):682–689. doi:10.1080/21663831.2022.2086834
  • Nie JF, Zhu YM, Liu JZ, et al. Periodic segregation of solute atoms in fully coherent twin boundaries. Science. 2013;340:957–960. doi:10.1126/science.1229369
  • Graff S, Brocks W, Steglich D. Yielding of magnesium: from single crystal to polycrystalline aggregates. Int J Plast. 2007;23(12):1957–1978. doi:10.1016/j.ijplas.2007.07.009
  • Ogawa Y, Singh A, Somekawa H. Activation of non-basal <c+a> slip in coarse-grained Mg-Sc alloy. Scr Mater. 2022;218:114830. doi:10.1016/j.scriptamat.2022.114830
  • Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys. Acta Mater. 2022;229:117746. doi:10.1016/j.actamat.2022.117746
  • Jia Y, Jiang S, Tan J, et al. The evolution of local stress during deformation twinning in a Mg-Gd-Y-Zn alloy. Acta Mater. 2022;222:117452. doi:10.1016/j.actamat.2021.117452