2,219
Views
0
CrossRef citations to date
0
Altmetric
Perspective Piece

Progress in additive manufacturing, additive repair and fatigue evaluation of aviation titanium alloy blades

, , , , , & ORCID Icon show all
Pages 973-1012 | Received 17 Jul 2023, Published online: 02 Nov 2023

References

  • Liu DX, Chen G. Aeroengine: the heart of aircraft. Beijing: Aviation Industry Press; 2003. (in Chinese)
  • MIL-HDBK-1783A, US Department of Defense; 1999.
  • MIL-HDBK-1783B, US Department of Defense; 2002.
  • GJB 241A-2010. General specification for aero turbojet and turbofan engines. Beijing: Equipment Development Department of the Central Military Commission; 2010. (in Chinese)
  • Garrison B. High cycle fatigue (HCF) science and technology program 2000 annual report; 2001.
  • Bartsch TM. High cycle fatigue (HCF) science and technology program 2002 annual report. High Cycle Fatig Sci Technol Prog Annual Rep. 2003: 40–43.
  • Sikan F, Wanjara P, Atabay SE, et al. Evaluation of electron beam wire-fed deposition technology for titanium compressor blade repair. Mater Today Comm. 2023;35. doi:10.1016/j.mtcomm.2023.105701
  • Cowles BA. High cycle fatigue in aircraft gas turbines – an industry perspective. Int J Fract. 1996;80(2):147–163. doi:10.1007/BF00012667
  • Zhang T, Chen W, Guan YP, et al. Study on titanium alloy TC4 ballistic penetration resistance part I:ballistic impact tests. Chinese J Aeronaut. 2012;25:388–395. doi:10.1016/S1000-9361(11)60402-0
  • Zhang T, Chen W, Guan YP, et al. Study on ballistic penetration resistance of titanium alloy TC4, part II: numerical analysis. Chinese J Aeronaut. 2013;3:606–613. doi:10.1016/j.cja.2013.04.013
  • Zhao ZH, Wang LF, Lu K, et al. Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade. Eng Fail Anal. 2020;118:104842. doi:10.1016/j.engfailanal.2020.104842
  • Ma C, Wang YN, Wu YG, et al. Hard object impact damage characteristics of aero engine fan blade. J Aerospace Power. 2017;5:1105–1111. (in Chinese)
  • Nie XF, He WF, Li QP, et al. Experiment investigation on microstructure and mechanical properties of TC17 titanium alloy treated by laser shock peening with different laser fluence. J Laser Appl. 2013;25(4):1892–1898.
  • Nie XF, He WF, Zhou LC, et al. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance. Mater Sci Eng: A. 2014;594:161–167. doi:10.1016/j.msea.2013.11.073
  • Luong H, Hill MR. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy. Mater Sci Eng: A. 2010;527(3):699–707. doi:10.1016/j.msea.2009.08.045
  • Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718. Mat Sci Eng: A. 2021;810:141029. doi:10.1016/j.msea.2021.141029
  • Denkena B, Boess V, Nespor D, et al. Engine blade regeneration: a literature review on common technologies in terms of machining. Int J Adv Manufact Technol. 2015;81(5–8):917–924. doi:10.1007/s00170-015-7256-2
  • Zhuo YM, Chen YY, Yang CL. Research status and prospect of welding repair technology for aero-engine blades. Aeronaut Manufact Technol. 2021;64(8):22–28. (in Chinese)
  • Brennan MC, Keist JS, Palmer TA. Defects in metal additive manufacturing processes. J Mater Eng Perfor. 2021;30(7):4808–4818. doi:10.1007/s11665-021-05919-6
  • Aschenbruck J, Adamczuk R, Seume JR. Recent progress in turbine blade and compressor blisk regeneration. Procedia Cirp. 2014;22(1):256–262. doi:10.1016/j.procir.2014.07.016
  • Langen D, Maier HJ, Hassel T. The effect of SiC addition on microstructure and mechanical properties of gas tungsten arc-welded Ti-6Al-4V alloy. J Mater Eng Perfor. 2018;27(1):253–260. doi:10.1007/s11665-017-3091-y
  • Tang CL, Wen JQ, Zhang WX, et al. 3D printing technology for titanium alloy and its defect. J Aeronautical Mater. 2019;39(1):38–47. in Chinese.
  • Zhao Z, Chen J, Zhang Q, et al. Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy. Trans Nonferrous Metal Soc China. 2017;27:2613–2621. doi:10.1016/S1003-6326(17)60289-9
  • Pan B, Huang YC, Li LQ, et al. Effects of multiple laser repairs on microstructure and hardness of ZTC4 titanium alloy. Chinese J Laser. 2019;46(10):1002011. (in Chinese) doi:10.3788/CJL201946.1002011
  • Chastand V, Tezenas A, Cadoret Y, et al. Fatigue characterization of titanium Ti-6Al-4V samples produced by additive manufacturing. Procedia Struct Integ. 2016;2:3168–3176. doi:10.1016/j.prostr.2016.06.395
  • Ren XP, Li HQ, Guo H, et al. A comparative study on mechanical properties of Ti-6Al-4V alloy processed by additive manufacturing vs. traditional processing. Mater Sci Eng: A. 2021;817.
  • Ackers MA, Messé OMDM, Manninen N, et al. Additive manufacturing of TTFNZ (Ti-4.5Ta-4Fe-7.5Nb-6Zr), a novel metastable β-titanium alloy for advanced engineering applications. J Alloys Compound. 2022;920. doi:10.1016/j.jallcom.2022.165899
  • Bian HY, Zuo SG, Qu S, et al. Microstructure and mechanical properties of heat treatment TA15/ TC17 titanium alloy by laser deposition repair. Chinese J Rare Matel. 2020;44(5):455–461. (in Chinese)
  • Luo SH, He WF, Chen K, et al. Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening. J Alloys Compound. 2018;750:626–635. doi:10.1016/j.jallcom.2018.04.029
  • Chi J, Cai Z, Wan Z, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: microstructures, residual stress and mechanical properties. Surf Coat Technol. 2020;396:125908.
  • Chi J, Cai Z, Zhang H, et al. Combining manufacturing of titanium alloy through direct energy deposition and laser shock peening processes. Mater Design. 2021;203:109626.
  • Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int J Machine Tool Manufact. 2021;170:103804. doi:10.1016/j.ijmachtools.2021.103804
  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Design. 2021;209:110008.
  • Kanishka K, Acherjee B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J Manufact Process. 2023;89:220–283. doi:10.1016/j.jmapro.2023.01.034
  • Liu F, Xie H, He W. Multi-field coupling fatigue behavior of laser additively manufactured metallic materials: a review. J Mater Res Technol. 2023;22:2819–2843. doi:10.1016/j.jmrt.2022.12.112
  • Foti P, Razavi N, Fatemi A, et al. Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies. Prog Mater Sci. 2023;137. doi:10.1016/j.pmatsci.2023.101126
  • Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog Mater Sci. 2021: 117.
  • Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manufact. 2015;8:12–35. doi:10.1016/j.addma.2015.07.002
  • Thompson SM, Bian L, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manufact. 2015;8:36–62. doi:10.1016/j.addma.2015.07.001
  • Fotovvati B, Namdari N, Dehghanghadikolaei A. Fatigue performance of selective laser melted Ti6Al4 V components: state of the art. Mater Res Exp. 2018;6(1). doi:10.1088/2053-1591/aae10e
  • Romero C, Yang F, Bolzoni L. Fatigue and fracture properties of Ti alloys from powder-based processes – a review. Int J Fatig. 2018;117:407–419. doi:10.1016/j.ijfatigue.2018.08.029
  • Liu S, Shin YC. Additive manufacturing of Ti6Al4 V alloy: A review. Mater Design. 2019;164:107552. doi:10.1016/j.matdes.2018.107552
  • Dutta B, Froes FH. The additive manufacturing (AM) of titanium alloys. Titanium Powder Metall. 2015:447–468. doi:10.1016/B978-0-12-800054-0.00024-1
  • Agius D, Kourousis K, Wallbrink C. A review of the As-built SLM Ti-6Al-4V mechanical properties towards achieving fatigue resistant designs. Metals. 2018;8(1). doi:10.3390/met8010075
  • Yin ZY, Liu TY. Structural strength design of aeroengines. Beijing: Science Press; 2022. (in Chinses)
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perfor. 2014;23(6):1917–1928. doi:10.1007/s11665-014-0958-z
  • ASTM International. Standard terminology for additive manufacturing technologies. Pennsylvania: ASTM International; 2013.
  • Zhao XH, Zuo ZB, Han ZY, et al. A review on powder titanium alloy 3D printing technology. Mater Rep. 2016;30(12):120–126. (in Chinese)
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Zhai Y, Galarraga H, Lados DA. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng. 2015;114:658–666. doi:10.1016/j.proeng.2015.08.007
  • Simonelli M, Tse YY, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4 V. Mater Sci Eng: A. 2014;616:1–11. doi:10.1016/j.msea.2014.07.086
  • Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manufact. 2018;19:1–20. doi:10.1016/j.addma.2017.11.001
  • Wei HL, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci. 2021;116.
  • Sinha A, Swain B, Behera A, et al. A review on the processing of aero-turbine blade using 3D print techniques. J Manufact Mater Process. 2022;6(1). doi:10.3390/jmmp6010016
  • Chatterjee B, Bhowmik S. Chapter 9 – evolution of material selection in commercial aviation industry – a review. In: Kumar K, Zindani D, Davim P, editors. Sustainable engineering products and manufacturing technologies. Academic Press; 2019. p. 199–219.
  • LEAP-1A-72-21-20-01A-655B-C fan blades (R001) blending (metal leading edge). CFM International; 2019. p. 13.
  • Boeing 737-300/400/500 aircraft maintenance manual chapter 72 enging CFM56-3. The Boeing Company; 2005. p. 379.
  • Boeing 737-600/700/800/900 aircraft maintenance manual chapter 72 enging CFM56-7. The Boeing Company; 2005. p. 298.
  • Zhang ZX, Zeng W, Bian X, et al. Failure analysis of a first stage turbine blade made of directionally solidified GTD111 superalloy and repaired by welding process. Eng Fail Anal. 2023.
  • Sayilgan V, Reker D, Bernhard R, et al. Single-crystal repair of high-pressure single-crystal turbine blades for industrial conditions. Procedia CIRP. 2022;111:233–236. doi:10.1016/j.procir.2022.08.056
  • Patriarca L, Foletti S, Beretta S, et al. A low-cycle fatigue life prediction model for Alloy625 arc wire welding repairs of gas turbine blades. Theo Appl Fract Mech. 2020;107. doi:10.1016/j.tafmec.2020.102558
  • Ou J, Zou L, Wan QH, et al. Weld-seam identification and model reconstruction of remanufacturing blade based on three-dimensional vision. Adv Eng Informat. 2021;49.
  • Gao J, Chen X, Yilmaz O, et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manufact Technol. 2007;36(11–12):1170–1179.
  • Kumar A, Kumar N, Mahto MK, et al. Impression creep behaviour of different zones of pulsed gas tungsten arc welded Ti-6Al-4V alloy. Mater Today Comm. 2023;36. doi:10.1016/j.mtcomm.2023.106722
  • Chen JT, Li HZ, Liu YZ, et al. Deformation behavior and microstructure characteristics of the laser-welded Ti-6Al-4V joint under variable amplitude fatigue. Mater Char. 2023;196.
  • Wanjara P, Watanabe K, de Formanoir C, et al. Titanium alloy repair with wire-feed electron beam additive manufacturing technology. Adv Mater Sci Eng. 2019;2019:1–23. doi:10.1155/2019/3979471
  • Abbott D, Arcella F. Laser forming titanium components. Adv Mater Process. 1998;153:29–30.
  • Lewis GK, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Mater Design. 2000;21(4):417–423. doi:10.1016/S0261-3069(99)00078-3
  • Gäumann M, BezenÇon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 2001;49(6):1051–1062. doi:10.1016/S1359-6454(00)00367-0
  • Keicher DM, Romero JA, Atwood CL, et al. Free form fabrication using the laser engineered net shaping (LENS{trademark}) process. Sandia Nat Lab. 1996: 1–9.
  • Keicher DM, Miller WD. LENSTM moves beyond RP to direct fabrication. Metal Powder Rep. 1998;53(12):26–28(3). doi:10.1016/S0026-0657(99)80073-3
  • Bi G, Gasser A. Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Procedia. 2011;12:402–409. doi:10.1016/j.phpro.2011.03.051
  • Kaierle S, Overmeyer L, Alfred I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting. CIRP J Manufact Sci Technol. 2017;19:196–199. doi:10.1016/j.cirpj.2017.04.001
  • Lepski D, Brückner F. Laser cladding. Berlin: Springer Netherlands; 2009.
  • Wang W. Research on ill bonding of Ti-6Al-4V titanium alloy in laser rapid repair processing. Shaanxi: Northwestern Polytechnical University; 2007.
  • Huang Y, Chen J, Zhang FY, et al. Influence of heat treatment on microstructure of laser solioforming Ti-6.5A1-3.5Mo-1.5Zr-0.25Si alloys. Rare Metal Mater Eng. 2009;38(12):2146–2150. (in Chinese)
  • Wang JW, Chen J, Liu YH, et al. Research on microstructure of TC17 titanium alloy fabricated by laser solid forming. Chinese J Lasers. 2010;37(3):847–851. (in Chinese). doi:10.3788/CJL20103703.0847
  • Ming XL, Chen J, Tan H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy. Chinese J Lasers. 2015;42(4):63–69. (in Chinese)
  • Ming XL, Chen J, Tan H, et al. Coarsening behavior of γ″ precipitates in GH4169 superalloy fabricated by laser solid forming. J Mater Eng. 2014;8:8–14. (in Chinese)
  • Lu PH, Liu JR, Xue L, et al. Microstructure and cracking behavior of K418 superalloy by laser forming repairing. Rare Metal Mater Eng. 2012;41(2):315–319. (in Chinese)
  • Wang HM. Materials’ funamental lssues of laser additive manufacturing for high performance large metallic components. Acta Aeronautica et Astronautica Sinica. 2014;35(10):2690–2698. (in Chinese)
  • Qian TT, Liu D, Tian XJ, et al. Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process. Trans Nonferr Metal Soc China. 2014;24:2729–2736. doi:10.1016/S1003-6326(14)63404-X
  • Zhu YY, Chen B, Tang HB, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy. Trans Nonferr Metal Soc China. 2018;28(1):36–46. doi:10.1016/S1003-6326(18)64636-9
  • Paydas H, Mertens A, Carrus R, et al. Laser cladding as repair technology for Ti–6Al–4 V alloy: influence of building strategy on microstructure and hardness. Mater Design. 2015;85:497–510. doi:10.1016/j.matdes.2015.07.035
  • Shrestha S, Panakarajupally RP, Kannan M, et al. Analysis of microstructure and mechanical properties of additive repaired Ti–6Al–4 V by direct energy deposition. Mater Sci Eng: A. 2021;806. doi:10.1016/j.msea.2020.140604
  • Shrestha S, El Rassi J, Kannan M, et al. Fracture toughness and fatigue crack growth rate properties of AM repaired Ti–6Al–4 V by direct energy deposition. Mater Sci Eng: A. 2021;823. doi:10.1016/j.msea.2021.141701
  • Ojo SA, Shrestha S, Manigandan K, et al. Application of small geometry specimens to determine the fatigue crack growth anisotropy of Ti–6Al–4 V additively manufactured for repair. Res Mater. 2022;15:100309.
  • Ojo SA, Shrestha S, El Rassi J, et al. The use of compact specimens to determine fracture toughness anisotropy of Ti–6Al–4 V additively manufactured for repair. Mater Sci Eng: A. 2021;823:141779.
  • Ge MZ, Tang Y, Zhang YK, et al. Enhancement in fatigue property of Ti-6Al-4V alloy remanufactured by combined laser cladding and laser shock peening processes. Surf Coat Technol. 2022: 444:128671.
  • Wang ZD, Yang K, Chen MZ, et al. Investigation of the microstructure and mechanical properties of Ti–6Al–4 V repaired by the powder-blown underwater directed energy deposition technique. Mater Sci Eng: A. 2022: 831:142186.
  • Eylon D, Froes FH. Tensile and fatigue strength improvement of titanium PM alloys through microstructural refinement. In: Kettunen PO, LepistÖ TK, Lehtonen ME, editor. Strength of metals and alloys (ICSMA 8). Oxford: Pergamon; 1989. p. 527–533.
  • Eylon D, Vogt RG, Froes FH. Property improvement of low chlorine titanium alloy blended elemental powder compacts by microstructure modification. Progr Powder Metall. 1986;42:625–634.
  • Hagiwara M, Kaieda Y, Kawabe Y, et al. Fatigue property enhancement of α-β titanium alloys by blended elemental P/M approach. ISIJ Int. 1991;31:922–930. doi:10.2355/isijinternational.31.922
  • Molaei R, Fatemi A, Phan N. Significance of hot isostatic pressing (HIP) on multiaxial deformation and fatigue behaviors of additive manufactured Ti-6Al-4V including build orientation and surface roughness effects. Int J Fatig. 2018;117:352–370. doi:10.1016/j.ijfatigue.2018.07.035
  • Wycisk E, Solbach A, Siddique S, et al. Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys Procedia. 2014;56:371–378. doi:10.1016/j.phpro.2014.08.120
  • Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatig. 2013;48:300–307. doi:10.1016/j.ijfatigue.2012.11.011
  • Kumar P, Prakash O, Ramamurty U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Mater. 2018;154:246–260. doi:10.1016/j.actamat.2018.05.044
  • Kumar P, Ramamurty U. High cycle fatigue in selective laser melted Ti-6Al-4V. Acta Mater. 2020;194:305–320. doi:10.1016/j.actamat.2020.05.041
  • Choi YR, Sun SD, Liu Q, et al. Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate. Int J Fatig. 2020;130:105236. doi:10.1016/j.ijfatigue.2019.105236
  • Razavi SMJ, Berto F. Directed energy deposition versus wrought Ti-6Al-4V: a comparison of microstructure, fatigue behavior, and notch sensitivity. Adv Eng Mater. 2019;21(8):1900220. doi:10.1002/adem.201900220
  • Kahlin M, Ansell H, Basu D, et al. Improved fatigue strength of additively manufactured Ti6Al4 V by surface post processing. Int J Fatig. 2020;134:105497. doi:10.1016/j.ijfatigue.2020.105497
  • Hu YN, Wu SC, Wu ZK, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy. Int J Fatig. 2020;136:105584. doi:10.1016/j.ijfatigue.2020.105584
  • Yan X, Yin S, Chen C, et al. Fatigue strength improvement of selective laser melted Ti6Al4 V using ultrasonic surface mechanical attrition. Mater Res Lett. 2019;7(8):327–333. doi:10.1080/21663831.2019.1609110
  • Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng: A. 2014;598:327–337. doi:10.1016/j.msea.2014.01.041
  • Pegues J, Roach M, Scott Williamson R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V. Int J Fatig. 2018;116:543–552. doi:10.1016/j.ijfatigue.2018.07.013
  • Günther J, Krewerth D, Lippmann T, et al. Fatigue life of additively manufactured Ti–6Al–4 V in the very high cycle fatigue regime. Int J Fatig. 2017;94:236–245. doi:10.1016/j.ijfatigue.2016.05.018
  • Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol. 2015;220:202–214. doi:10.1016/j.jmatprotec.2015.01.025
  • Gong H, Rafi K, Gu H, et al. Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater Design. 2015;86:545–554. doi:10.1016/j.matdes.2015.07.147
  • Benedetti M, Fontanari V, Bandini M, et al. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: mean stress and defect sensitivity. Int J Fatig. 2018;107:96–109. doi:10.1016/j.ijfatigue.2017.10.021
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4 V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perfor. 2013;22(12):3872–3883. doi:10.1007/s11665-013-0658-0
  • Xu W, Sun S, Elambasseril J, et al. Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties. Mineral Metal Mater Soc. 2015;67(3):668–673. doi:10.1007/s11837-015-1297-8
  • Greitemeier D, Dalle Donne C, Schoberth A, et al. Uncertainty of additive manufactured Ti-6Al-4V: chemistry, microstructure and mechanical properties. Appl Mech Mater. 2015;807:169–180. doi:10.4028/www.scientific.net/AMM.807.169
  • Hrabe N, Gnäupel-Herold T, Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4 V) fabricated via electron beam melting (EBM): effects of internal defects and residual stress. Int J Fatig. 2017;94:202–210. doi:10.1016/j.ijfatigue.2016.04.022
  • Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng: A. 2016;651:198–213. doi:10.1016/j.msea.2015.10.068
  • Wang X, He X, Wang T, et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime. Addit Manufact. 2019;28:373–393. doi:10.1016/j.addma.2019.05.007
  • Greitemeier D, Palm F, Syassen F, et al. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int J Fatig. 2017;94:211–217. doi:10.1016/j.ijfatigue.2016.05.001
  • Masuo H, Tanaka Y, Morokoshi S, et al. Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. Int J Fatig. 2018;117:163–179. doi:10.1016/j.ijfatigue.2018.07.020
  • Wycisk E, Emmelmann C, Siddique S, et al. High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting. Adv Mater Res. 2013;816–817:134–139. doi:10.4028/www.scientific.net/AMR.816-817.134
  • Kahlin M, Ansell H, Moverare JJ. Fatigue behaviour of notched additive manufactured Ti6Al4 V with as-built surfaces. Int J Fatig. 2017;101:51–60. doi:10.1016/j.ijfatigue.2017.04.009
  • Bagehorn S, Wehr J, Maier HJ. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatig. 2017;102:135–142. doi:10.1016/j.ijfatigue.2017.05.008
  • Greitemeier D, Dalle Donne C, Syassen F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4 V. Mater Sci Technol. 2015;32:1743284715Y.000.
  • Becker TH, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals. Acta Mater. 2021;219:117240. doi:10.1016/j.actamat.2021.117240
  • Karthik GM, Kim HS. Heterogeneous aspects of additive manufactured metallic parts: a review. Metal Mater Int. 2021;27(1):1–39. doi:10.1007/s12540-020-00931-2
  • Liu D, Tang B, Zhu X, et al. Improvement of the fretting fatigue and fretting wear of Ti6Al4 V by duplex surface modification. Surf Coat Technol. 1999;116–119:234–238. doi:10.1016/S0257-8972(99)00279-0
  • Joshi V, Lavender C, Moxson V, et al. Development of Ti-6Al-4V and Ti-1Al-8V-5Fe alloys using low-cost TiH 2 powder feedstock. J Mater Eng Perfor. 2013;22(4):995–1003. doi:10.1007/s11665-012-0386-x
  • Wirth G, Grundhoff KJ, Smarsly W. Correlations between post-hip treatment, resulting microstructure and fatigue behaviour of prealloyed Ti-6Al-4V powder compacts. Overcom Mater Bound. 1985;17:125–134.
  • Cao Y, Zeng F, Liu B, et al. Characterization of fatigue properties of powder metallurgy titanium alloy. Mater Sci Eng: A. 2016;654:418–425. doi:10.1016/j.msea.2015.12.058
  • Chen G, Zhao SY, Tan P, et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018;333:38–46. doi:10.1016/j.powtec.2018.04.013
  • Haar T, Becker GM, H T. The influence of microstructural texture and prior beta grain recrystallisation on the deformation behaviour of laser powder bed fusion produced Ti–6Al–4 V. Mater Sci Eng: A. 2021;814:141185. doi:10.1016/j.msea.2021.141185
  • De Formanoir C, Martin G, Prima F, et al. Micromechanical behavior and thermal stability of a dual-phase α+α’ titanium alloy produced by additive manufacturing. Acta Mater. 2019;162:149–162. doi:10.1016/j.actamat.2018.09.050
  • ASTM. ASTM E3166-20: standard guide for nondestructive examination of metal additively manufactured aerospace parts after build 1. ASTM Int. 2022: 1–63.
  • Li P, Warner DH, Fatemi A, et al. Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4 V and perspective for future research. Int J Fatig. 2016;85:130–143. doi:10.1016/j.ijfatigue.2015.12.003
  • Sterling AJ, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4 V. Mater Sci Eng: A. 2016;655:100–112. doi:10.1016/j.msea.2015.12.026
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatig. 2017;94:218–235. doi:10.1016/j.ijfatigue.2016.03.014
  • Becker T, Dhansay N. Influence of porosity on the fatigue life of laser powder bed fusion produced Ti6Al4 V. Mater Design Process Comm. 2020;3:1–7.
  • Leung CLA, Marussi S, Atwood R, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Comm. 2018;9:1355. doi:10.1038/s41467-018-03734-7
  • Shui X, Yamanaka K, Mori M, et al. Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Mater Sci Eng: A. 2017;680:239–248. doi:10.1016/j.msea.2016.10.059
  • Seifi M, Salem A, Satko D, et al. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4 V. Int J Fatig. 2017;94:263–287. doi:10.1016/j.ijfatigue.2016.06.001
  • Slotwinski JA, Garboczi EJ, Hebenstreit KM. Porosity measurements and analysis for metal additive manufacturing process control. J Res Nat Instit Stand Technol. 2014;119:494–528. doi:10.6028/jres.119.019
  • Pegues JW, Shao S, Shamsaei N, et al. Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. Int J Fatig. 2020;132:105358. doi:10.1016/j.ijfatigue.2019.105358
  • Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Design. 2019;182:108091. doi:10.1016/j.matdes.2019.108091
  • Molaei R, Fatemi A, Sanaei N, et al. Fatigue of additive manufactured Ti-6Al-4V, part II: The relationship between microstructure, material cyclic properties, and component performance. Int J Fatig. 2020;132:105363. doi:10.1016/j.ijfatigue.2019.105363
  • Sangid MD. The physics of fatigue crack initiation. Int J Fatig. 2013;57:58–72. doi:10.1016/j.ijfatigue.2012.10.009
  • Chan KS. Roles of microstructure in fatigue crack initiation. Int J Fatig. 2010;32(9):1428–1447. doi:10.1016/j.ijfatigue.2009.10.005
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng: A. 2015;644:171–183. doi:10.1016/j.msea.2015.07.056
  • Jiang R, Bull DJ, Evangelou A, et al. Strain accumulation and fatigue crack initiation at pores and carbides in a SX superalloy at room temperature. Int J Fatig. 2018;114:22–33. doi:10.1016/j.ijfatigue.2018.05.003
  • Poulin JR, Kreitcberg A, Terriault P, et al. Long fatigue crack propagation behavior of laser powder bed-fused inconel 625 with intentionally-seeded porosity. Int J Fatig. 2019;127:144–156. doi:10.1016/j.ijfatigue.2019.06.008
  • Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes. 1999;2:123–147. doi:10.1023/A:1009976418553
  • Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions. Oxford: Elsevier Ed; 2002.
  • Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J. 2007;13(4):196–203. doi:10.1108/13552540710776142
  • Murakami Y. Inclusion rating by statistics of extreme values and its application to fatigue strength prediction and quality control of material. J Res Nat Instit Stand Technol. 1994;99(4):345–351. doi:10.6028/jres.099.032
  • Shi G, Atkinson HV, Sellars CM, et al. Application of the generalized pareto distribution to the estimation of the size of the maximum inclusion in clean steels. Acta Mater. 1999;47(5):1455–1468. doi:10.1016/S1359-6454(99)00034-8
  • Romano S, Brandão A, Gumpinger J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements. Mater Design. 2017;131:32–48. doi:10.1016/j.matdes.2017.05.091
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Mater. 2010;58(9):3303–3312. doi:10.1016/j.actamat.2010.02.004
  • Gong H, Rafi K, Gu H, et al. Analysis of defect generation in Ti–6Al–4 V parts made using powder bed fusion additive manufacturing processes. Addit Manufact. 2014;1–4:87–98. doi:10.1016/j.addma.2014.08.002
  • Scipioni Bertoli U, Wolfer AJ, Matthews MJ, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Design. 2017;113:331–340. doi:10.1016/j.matdes.2016.10.037
  • Ming T. Inclusions, porosity, and fatigue of AlSi10Mg parts produced by selective laser melting. Carnegie Mellon University; 2018.
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915–2925. doi:10.1016/j.jmatprotec.2014.06.005
  • Sheridan L, Gockel JE, Scott-Emuakpor OE. Primary processing parameters, porosity production, and fatigue prediction for additively manufactured alloy 718. J Mater Eng Perfor. 2019;28(9):5387–5397. doi:10.1007/s11665-019-04305-7
  • Moylan S, Slotwinski J, Cooke A, et al., editors. Proposal for a standardized test artifact for additive manufacturing machines and processes. In: 23rd annual international solid freeform fabrication symposium – an additive manufacturing conference. Austin, TX: University of Texas at Austin; 2012.
  • Li Y, Yang H, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming. Mater Sci Eng: A. 2003;360(1–2):18–25. doi:10.1016/S0921-5093(03)00435-0
  • Wycisk E, Kranz J, Emmelmann C. Influence of surface properties on fatigue strength of light weight structures produced by laser additive manufacturing in Ti-6Al-4V. Berlin.: DDMC Direct Digital Manufacturing Fraunhofer Conference; 2012.
  • Vlcek J. Property investigation of laser cladded, laser melted and electron beam melted Ti-Al6-V4. In: TMS 2007, 136th Annual Meeting & Exhibition, Minerals, Metalls and Materials Society/Light Metal; 2007. p. 89–98.
  • Pegues J, Shamsaei N, Roach M, et al. Fatigue life estimation of additive manufactured parts in the as-built surface condition. Mater Design Process Comm. 2019;1:e36. doi:10.1002/mdp2.36
  • Murakami Y, Tsutsumi K, Fujishima M. Quantitative evaluation of effect of surface roughnesson fatigue strength. Trans Japan Soc Mech Eng Series A. 1996;62:1124–1131. doi:10.1299/kikaia.62.1124
  • Mercelis P, Kruth J-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J. 2006: 12.
  • Sikan F, Wanjara P, Gholipour J, et al. Effect of substrate condition on wire fed electron beam additive deposition. Mater Sci Eng: A. 2022: 849.
  • Becker TH, Dhansay NM, Haar GMT, et al. Near-threshold fatigue crack growth rates of laser powder bed fusion produced Ti-6Al-4V. Acta Mater. 2020;197:269–282. doi:10.1016/j.actamat.2020.07.049
  • Rangaswamy P, Griffith ML, Prime MB, et al. Residual stresses in LENS® components using neutron diffraction and contour method. Mater Sci Eng: A. 2005;399(1–2):72–83. doi:10.1016/j.msea.2005.02.019
  • Cain V, Thijs L, Van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4 V alloy produced by selective laser melting. Addit Manufact. 2015;5:68–76. doi:10.1016/j.addma.2014.12.006
  • Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4 V samples produced by selective laser melting. Virt Phys Prototyping. 2015;10:1–10. doi:10.1080/17452759.2015.1026045
  • Sun CQ, Wu H, Chi W, et al. Nanograin formation and cracking mechanism in Ti alloys under very high cycle fatigue loading. Int J Fatig. 2022;107331.
  • Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatig. 2017;94:178–191. doi:10.1016/j.ijfatigue.2016.06.020
  • Emanuelli L, Molinari A, Facchini L, et al. Effect of heat treatment temperature and turning residual stresses on the plain and notch fatigue strength of Ti-6Al-4V additively manufactured via laser powder bed fusion. Int J Fatig. 2022;162. doi:10.1016/j.ijfatigue.2022.107009
  • Tammas-Williams S, Withers PJ, Todd I, et al. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scripta Mater. 2016;122:72–76. doi:10.1016/j.scriptamat.2016.05.002
  • Romano S, Nezhadfar PD, Shamsaei N, et al. High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: effect of sub-surface porosity and surface roughness. Theoret Appl Fract Mech. 2020;106. doi:10.1016/j.tafmec.2020.102477
  • Kusiak A. Smart manufacturing must embrace big data. Nature. 2017;544(7648):23–25. doi:10.1038/544023a
  • Xuan FZ, Zhu ML, Wang GB. Retrospect and prospect on century-long research of structural fatigue. J Mech Eng. 2021;57(6):26–51. (in Chinese) doi:10.3901/JME.2021.06.026
  • Chapetti MD, Guerrero AO. Estimation of notch sensitivity and size effect on fatigue resistance. Procedia Eng. 2013;66:323–333. doi:10.1016/j.proeng.2013.12.087
  • Du L, Pan X, Qian G, et al. Crack initiation mechanisms under two stress ratios up to very-high-cycle fatigue regime for a selective laser melted Ti-6Al-4V. Int J Fatig. 2021;149:106294. doi:10.1016/j.ijfatigue.2021.106294
  • Pan X, Xu S, Qian G, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Mater Sci Eng: A. 2020;798:140110. doi:10.1016/j.msea.2020.140110
  • Chi W, Wang W, Xu W, et al. Effects of defects on fatigue behavior of TC17 titanium alloy for compressor blades: crack initiation and modeling of fatigue strength. Eng Fract Mech. 2022;259:108136. doi:10.1016/j.engfracmech.2021.108136
  • Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris’ law for fatigue crack growth. J the Mech Phys Solid. 2006;54(7):1333–1349. doi:10.1016/j.jmps.2006.01.007
  • Gross T, Seelig T. Bruchmechanik: Mit einer Einführung in die Mikromechanik. Heidelberg: Springer; 2011.
  • Paris PC, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1960;85:528–534. doi:10.1115/1.3656900
  • Foreman RG, Peary VE, Engle RM. Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng. 1967;89:459–464. doi:10.1115/1.3609637
  • Laird C. Mechanisms and theories of fatigue. Fatig Microstruct: Am Soc Metal. 1979: 149–203.
  • Wolf E. Fatigue crack closure under cyclic tension. Eng Fract Mech. 1970;2(1):37–45. doi:10.1016/0013-7944(70)90028-7
  • Pearson S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks. Eng Fract Mech. 1975;7(2):235–247. doi:10.1016/0013-7944(75)90004-1
  • Haddad MH, Topper T, Smith KN. Prediction of non-propagating cracks. Eng Fract Mech. 1979;12/31(11):573–584. doi:10.1016/0013-7944(79)90081-X
  • El Haddad M, Dowling N, Topper T, et al. J-integral applications for short fatigue cracks at notches. Int J Fract. 1980;16:15–30. doi:10.1007/BF00042383
  • Kitagawa H, Takahashi S, editors. Application of fracture mechanics to very small cracks or the cracks in the early stage. In: Proc 2nd Int Conf Mech Behaviour of Mater. Met Park Ohio; 1976.
  • Ritchie RO, Lankford J. Small fatigue cracks. Warrendale: Metallurgical and Petroleum Engineers; 1986.
  • Ritchie RO, Lankford J. Small fatigue cracks: A statement of the problem and potential solutions. Mater Sci Eng. 1986;84:11–16. doi:10.1016/0025-5416(86)90217-X
  • Cui WM, Zhu Q, Zhu DP. A better method for determining fatigue scatter factor of aircraft structures. J Northwestern Polytech Univ. 2001;19(2):233–237. (in Chinese)
  • Pugno NM. Quantized failure criteria and indirect observation for predicting the nanoscale strength of materials: the example of the ultra nano crystalline diamond. Physics. 2004.
  • Toriyama T, Murakami Y, Yamashita T, et al. Inclusion rating by statistics of extreme for electron beam remelted super clean bearing steel and Its application to fatigue strength prediction. Tetsu-to-Hagane. 1995;81(10):1019–1024. (in Japanese) doi:10.2355/tetsutohagane1955.81.10_1019
  • Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int J Fatig. 1989;11(5):291–298. doi:10.1016/0142-1123(89)90054-6
  • Shojima K, Weldle S, Okazaki S, et al. Notch effects in high cycle fatigue of Ti-6Al-4V. Mater Sci Forum. 2013;750:232–235. doi:10.4028/www.scientific.net/MSF.750.232
  • Matsunaga H, Murakami Y, Kubota M, et al. Fatigue strength of Ti-6Al-4V alloys containing small defects. Mater Sci Res Int. 2003;9(4):263–269.
  • Wu SC, Xiao TQ, Withers PJ. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Eng Fract Mech. 2017;182:127–156. doi:10.1016/j.engfracmech.2017.07.027
  • Sandell V, Hansson T, Roychowdhury S, et al. Defects in electron beam melted Ti-6Al-4V: fatigue life prediction using experimental data and extreme value statistics. Mater. 2021;30:14(640).
  • Fatemi A, Molaei R, Sharifimehr S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect. Int J Fatig. 2017;100:347–366. doi:10.1016/j.ijfatigue.2017.03.044
  • Atzori B, Lazzarin P, Meneghetti G, editors. Local, semilocal and nominal approaches to estimate the fatigue strength of welded joints. Engineering Against Fracture; Dordrecht, Netherlands: Springer; 2009.
  • Romano S, Patriarca L, Foletti S, et al. LCF behaviour and a comprehensive life prediction model for AlSi10Mg obtained by SLM. Int J Fatig. 2018;117:47–62. doi:10.1016/j.ijfatigue.2018.07.030
  • Siddique S, Imran M, Rauer M, et al. Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater Design. 2015;83:661–669. doi:10.1016/j.matdes.2015.06.063
  • Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatig. 2017;98:14–31. doi:10.1016/j.ijfatigue.2017.01.001
  • Sanaei N, Fatemi A. Defect-based fatigue life prediction of L-PBF additive manufactured metals. Eng Fract Mech. 2021: 244.
  • Romano S, Brückner-Foit A, Brandão A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: defect-based modelling and prediction of fatigue strength. Eng Fract Mech. 2018;187:165–189. doi:10.1016/j.engfracmech.2017.11.002
  • Ayatollahi MR, Razavi N, Yahya MY. Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique. Eng Fract Mech. 2015;145:115–127. doi:10.1016/j.engfracmech.2015.03.027
  • Romano S, Beretta S, Brandão A, et al. HCF resistance of AlSi10Mg produced by SLM in relation to the presence of defects. Procedia Struct Integ. 2017;7:101–108. doi:10.1016/j.prostr.2017.11.066
  • Molaei R, Fatemi A. Fatigue performance of additive manufactured metals under variable amplitude service loading conditions including multiaxial stresses and notch effects: experiments and modelling. Int J Fatig. 2021;145. doi:10.1016/j.ijfatigue.2020.106002
  • Molaei R, Fatemi A, Phan N. Notched fatigue of additive manufactured metals under axial and multiaxial loadings, part II: data correlations and life estimations. Int J Fatig. 2022;156. doi:10.1016/j.ijfatigue.2021.106648
  • Susmel L, Taylor D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading. Int J Fatig. 2012;38:7–24. doi:10.1016/j.ijfatigue.2011.11.015
  • Fatemi A, Molaei R, Sharifimehr S, et al. Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect. Int J Fatig. 2017;99:187–201. doi:10.1016/j.ijfatigue.2017.03.002
  • Li J, Duan Q, Hou J, et al. In-situ monitoring of substrate deformation in directed energy deposition process using the coherent gradient sensing method. Addit Manufact. 2020;36.
  • Feng W, Mao Z, Yang Y, et al. Online defect detection method and system based on similarity of the temperature field in the melt pool. Addit Manufact. 2022;54. doi:10.1016/j.addma.2022.102760
  • Shi W, Zhang C, Xie H. Online deformation measurement of laser repair substrate based on orthogonal sampling moiré. Appl Sci. 2022;12(11).
  • Li J, Li Y, Hou J, et al. Phase-shifting technique of coherent gradient sensing method for residual deformation analysis of repaired components. Exper Mech. 2021;62(1):125–136. doi:10.1007/s11340-021-00770-1
  • Cao QK, Xie HM, Wang H. Fourier-series-based virtual fields method combining with moiré interferometry for characterising elastic modulus distribution of laser repaired GH4169. Strain. 2019;55(1).
  • Mazhari AA, Ticknor R, Swei S, et al. Automated testing and characterization of additive manufacturing (ATCAM). J Mater Eng and Perfor. 2021;30(9):6862–6873. doi:10.1007/s11665-021-06042-2
  • Liu S, Shi W, Zhan Z, et al. On the development of error-trained BP-ANN technique with CDM model for the HCF life prediction of aluminum alloy. Int J Fatig. 2022;160.
  • Zhan Z, Li H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing. Int J Fatig. 2021;145. doi:10.1016/j.ijfatigue.2020.106089
  • Zhan Z, Hu W, Meng Q. Data-driven fatigue life prediction in additive manufactured titanium alloy: a damage mechanics based machine learning framework. Eng Fract Mech. 2021;252. doi:10.1016/j.engfracmech.2021.107850
  • Snow Z, Reutzel EW, Petrich J. Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning. J Mater Process Technol. 2022;302. doi:10.1016/j.jmatprotec.2021.117476
  • Chen J, Liu Y. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Addit Manufact. 2021: 39.
  • Dang L, He X, Tang D, et al. A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures. Int J Fatig. 2022;159. doi:10.1016/j.ijfatigue.2022.106748
  • Byrne J. Influence of LCF overloads on combined HCF/LCF crack growth. Int J Fatig. 2003;25(9–11):827–834. doi:10.1016/S0142-1123(03)00131-2
  • Witek L. Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration. Eng Fail Anal. 2009;16(7):2163–2170. doi:10.1016/j.engfailanal.2009.02.014
  • Zhu SP, Foletti S, Beretta S. Probabilistic framework for multiaxial LCF assessment under material variability. Int J Fatig. 2017;103:371–385. doi:10.1016/j.ijfatigue.2017.06.019
  • Jinlong W, Yangyang Y, Jing Y, et al. Fatigue evaluation of FV520B-I shrouded impeller blade with fatigue crack based on FEA and fracture mechanics. Eng Fail Anal. 2020;115. doi:10.1016/j.engfailanal.2020.104663
  • Qu A, Li F. Influence of 3D printing on compressor impeller fatigue crack propagation life. Int J Mech Sci. 2023: 245.
  • Citarella R, Giannella V, Vivo E, et al. FEM-DBEM approach for crack propagation in a low pressure aeroengine turbine vane segment. Theor Appl Fract Mech. 2016;86:143–152. doi:10.1016/j.tafmec.2016.05.004
  • Giannella V, Fellinger J, Perrella M, et al. Fatigue life assessment in lateral support element of a magnet for nuclear fusion experiment “Wendelstein 7-X”. Eng Fract Mech. 2017;178:243–257. doi:10.1016/j.engfracmech.2017.04.033