629
Views
1
CrossRef citations to date
0
Altmetric
Original Reports 

In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasses

, , , , &
Pages 1022-1030 | Received 05 Sep 2023, Published online: 05 Nov 2023

References

  • Gleiter H. Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today?. Acta Mater. 2008;56(19):5875–5893. doi: 10.1016/j.actamat.2008.08.028
  • Ivanisenko Y, Kübel C, Nandam S, et al. Structure and properties of nanoglasses. Adv Eng Mater. 2018;20(12):1–16. doi: 10.1002/adem.v20.12
  • Li T, Ma K, Zheng G. The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses. J Mater Res. 2021;36(24):4951–4962. doi: 10.1557/s43578-021-00429-6
  • Ritter Y, Şopu D, Gleiter H, et al. Structure, stability and mechanical properties of internal interfaces in cu64zr36 nanoglasses studied by md simulations. Acta Mater. 2011;59(17):6588–6593. doi: 10.1016/j.actamat.2011.07.013
  • Albe K, Ritter Y, Şopu D. Enhancing the plasticity of metallic glasses: shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mech Mater. 2013;67:94–103. doi: 10.1016/j.mechmat.2013.06.004
  • Stoesser A, Ghafari M, Kilmametov A, et al. Influence of interface on structure and magnetic properties of fe50b50 nanoglass. J Appl Phys. 2014;116(13):Article ID 134305. doi: 10.1063/1.4897153
  • Nandam S, Ivanisenko Y, Schwaiger R, et al. Cu-Zr nanoglasses: atomic structure, thermal stability and indentation properties. Acta Mater. 2017;136:181–189. doi: 10.1016/j.actamat.2017.07.001
  • Kalcher C, Adjaoud O, Rohrer J, et al. Reinforcement of nanoglasses by interface strengthening. Scr Mater. 2017;141:115–119. doi: 10.1016/j.scriptamat.2017.08.004
  • Adjaoud O, Albe K. Microstructure formation of metallic nanoglasses: insights from molecular dynamics simulations. Acta Mater. 2018;145:322–330. doi: 10.1016/j.actamat.2017.12.014
  • Adjaoud O, Albe K. Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses. Acta Mater. 2019;168:393–400. doi: 10.1016/j.actamat.2019.02.033
  • Arnold W, Birringer R, Braun C, et al. Elastic moduli of nanoglasses and melt-spun metallic glasses by ultrasonic time-of-flight measurements. Trans Indian Inst Met. 2020;73:1363–1371. doi: 10.1007/s12666-020-01969-x
  • Voigt H, Rigoni A, Boltynjuk E, et al. Evidence for glass-glass interfaces in a columnar cu-zr nanoglass. Adv Funct Mater. 2023;33(44). Article ID 2302386. doi: 10.1002/adfm.v33.44
  • Ramesh N, Davis P, Zielinski J, et al. Application of free-volume theory to self diffusion of solvents in polymers below the glass transition temperature: A review. J Polym Sci B Polym Phys. 2011;49(23):1629–1644. doi: 10.1002/polb.v49.23
  • Şopu D, Albe K. Influence of grain size and composition, topology and excess free volume on the deformation behavior of cu–zr nanoglasses. Beilstein J Nanotechnol. 2015;6(1):537–545.
  • Franke O, Leisen D, Gleiter H, et al. Thermal and plastic behavior of nanoglasses. J Mater Res. 2014;29(10):1210–1216. doi: 10.1557/jmr.2014.101
  • Śniadecki Z, Wang D, Ivanisenko Y, et al. Nanoscale morphology of ni50ti45cu5 nanoglass. Mater Charact. 2016;113:26–33. doi: 10.1016/j.matchar.2015.12.025
  • Wang X, Cao Q, Jiang J, et al. Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scr Mater. 2011;64(1):81–84. doi: 10.1016/j.scriptamat.2010.09.015
  • Ye H, Zhang Z, Wang R. Nucleation and growth of nanocrystals investigated by in situ transmission electron microscopy. Small. 2023;Article ID 2303872. doi: 10.1002/smll.202303872
  • Kalikmanov V. Classical nucleation theory. In: nucleation theory. Netherlands: Springer; 2012. p.17–41.
  • Sleutel M, Lutsko J, Van Driessche A, et al. Observing classical nucleation theory at work by monitoring phase transitions with molecular precision. Nat Commun. 2014;5(1):5598. doi: 10.1038/ncomms6598
  • Dukes M, Marusak K, Guo Y, et al. Axon: an in-situ tem software platform streamlines image acquisition, metadata synchronization and data analysis, enabling deeper understanding, and improved reproducibility of in-situ experimental results. Microscopy and Microanalysis. 2022;28(S1):108–109. doi: 10.1017/S1431927622001337
  • Huang S, Francis C, Ketkaew J, et al. Correlation symmetry analysis of electron nanodiffraction from amorphous materials. Ultramicroscopy. 2022;232:Article ID 113405. doi: 10.1016/j.ultramic.2021.113405
  • Huang S, Francis C, Sunderland J, et al. Large area, high resolution mapping of approximate rotational symmetries in a pd77.5cu6si16.5 metallic glass thin film. Ultramicroscopy. 2022;241:Article ID 113612. doi: 10.1016/j.ultramic.2022.113612
  • Duncan J. pyxem/pyxem: pyxem 0.15.1. Online; 2023 May. doi: 10.5281/zenodo.7927374.
  • Miracle D. A structural model for metallic glasses. Nat Mater. 2004;3(10):697–702. doi: 10.1038/nmat1219
  • Sachdev S, Nelson D. Order in metallic glasses and icosahedral crystals. Phys Rev B. 1985;32(7):4592. doi: 10.1103/PhysRevB.32.4592
  • He L, Zhang P, Besser MF, et al. Electron correlation microscopy: a new technique for studying local atom dynamics applied to a supercooled liquid. Microsc Microanal. 2015;21(4):1026–1033. doi: 10.1017/S1431927615000641
  • Zhang P, Maldonis J, Liu Z, et al. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun. 2018;9(1):1–7. doi: 10.1038/s41467-017-02088-w
  • Chung S, Stevens J. Time-dependent correlation and the evaluation of the stretched exponential or Kohlrausch-Williams-Watts function. Am J Phys. 1991;59(11):1024–1030. doi: 10.1119/1.16640
  • Das A, Dufresne E, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass. Acta Mater. 2020;196:723–732. doi: 10.1016/j.actamat.2020.06.063
  • Das A, Derlet P, Liu C, et al. Stress breaks universal aging behavior in a metallic glass. Nat Commun. 2019;10(1):5006. doi: 10.1038/s41467-019-12892-1
  • Hu S, Liu R, Liu L, et al. Influence of temperature and hydrostatic pressure on the galvanic corrosion between 90/10 cuni and aisi 316l stainless steel. J Mater Res Technol. 2021;13:1402–1415. doi: 10.1016/j.jmrt.2021.05.067
  • Zhang X. Galvanic corrosion. Uhlig's corrosion handbook. Hoboken, NJ: Wiley; 2011. p. 123.
  • Grell D, Wilkin Y, Gostin P, et al. Corrosion fatigue studies on a bulk glassy zr-based alloy under three-point bending. Frontiers in Materials. 2017;3:60. doi: 10.3389/fmats.2016.00060
  • Kelton K, Lee G, Gangopadhyay A, et al. First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys Rev Lett. 2003;90(19):Article ID 195504. doi: 10.1103/PhysRevLett.90.195504
  • Wilde G, Rösner H. Nanocrystallization in a shear band: an in situ investigation. Appl Phys Lett. 2011;98(25):251904-1–251904-3. doi: 10.1063/1.3602315
  • Méar F, Doisneau B, Yavari A, et al. Structural effects of shot-peening in bulk metallic glasses. J Alloys Compd. 2009;483(1–2):256–259.
  • Altounian Z, Guo-hua T, Strom-Olsen J. Crystallization characteristics of cu-zr metallic glasses from cu70zr30 to cu25zr75. J Appl Phys. 1982;53(7):4755–4760. doi: 10.1063/1.331304
  • Gibbs J. Collected works. ACS Publications; 1928.
  • Bohm J. On the driving force in phase transitions: calculation of chemical potential differences. Cryst Res Technol. 1981;16(8):869–877. doi: 10.1002/crat.v16:8
  • Mer V. Nucleation in phase transitions. Ind Eng Chem. 1952;44(6):1270–1277. doi: 10.1021/ie50510a027
  • Turnbull D. Metastable structures in metallurgy. Metall Mater Trans B. 1981;12:217–230. doi: 10.1007/BF02654454