880
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

A molecular dynamics study on the Mie-Grüneisen equation-of-state and high strain-rate behavior of equiatomic CoCrFeMnNi

, ORCID Icon & ORCID Icon
Pages 1055-1062 | Received 09 Aug 2023, Published online: 14 Nov 2023

References

  • McMillan P. New materials from high-pressure experiments. Nat Mater. 2002;1(1):19–25. doi: 10.1038/nmat716
  • Schulz U, Leyens C, Fritscher K, et al. Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp Sci Technol. 2003;7(1):73–80. doi: 10.1016/S1270-9638(02)00003-2
  • Farrer J. The alloy tree: A guide to low-alloy steels, stainless steels, and nickel-base alloys. Cambridge (England): CRC Press; 2004.
  • Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Reed C. The superalloys: fundamentals and applications. Cambridge (England): Cambridge University Press; 2008.
  • Zinkle S, Snead L. Designing radiation resistance in materials for fusion energy. Annu Rev Mater Res. 2014;44:241–267. doi: 10.1146/annurev-matsci-070813-113627
  • Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Cantor B. Multicomponent high-entropy Cantor alloys. Prog Mater Sci. 2021;120:100754. doi: 10.1016/j.pmatsci.2020.100754
  • Meyers M. Dynamic behavior of materials. New York, NY: John Wiley & Sons, Inc.; 1994. doi: 10.1002/9780470172278
  • Ramesh K. High rates and impact experiments. In: Sharpe W, editor. Springer handbook of experimental solid mechanics. Chapter 33. Boston, MA: Springer; 2008.doi: 10.1007/978-0-387-30877-7_33.
  • Forbes J. Shock wave compression of condensed matter: a primer. Berlin: Springer; 2012. doi: 10.1007/978-3-642-32535-9.
  • Dolan D. Extreme measurements with photonic doppler velocimetry (PDV). Rev Sci Instrum. 2020;91(5). doi: 10.1063/5.0004363
  • Setchell R. Velocity interferometer system for any reflector (VISAR): studies of wave growth in granular explosives. In: High speed photography, videography, and photonics I; Vol. 427; SPIE; 1984. p. 149–154.doi: 10.1117/12.936275 null
  • Moshe E, Dekel E, Henis Z, et al. Development of an optically recording velocity interferometer system for laser induced shock waves measurements. Appl Phys Lett. 1996;69(10):1379–1381. doi: 10.1063/1.117587
  • Jiang Z, He J, Wang H, et al. Shock compression response of high entropy alloys. Mater Res Lett. 2016;4(4):226–232. doi: 10.1080/21663831.2016.1191554
  • Thürmer D, Zhao S, Deluigi O, et al. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. J Alloys Compd. 2022;895:162567. doi: 10.1016/j.jallcom.2021.162567
  • Ehler A, Dhiman A, Dillard T, et al. High-strain rate spall strength measurement for CoCrFeMnNi high-entropy alloy. Metals. 2022;12(9):1482. doi: 10.3390/met12091482
  • Hasnip P, Refson K, Probert M, et al. Density functional theory in the solid state. Philos Trans R Soc A Math Phys Eng Sci. 2014;372(2011):20130270. doi: 10.1098/rsta.2013.0270
  • Söderlind P, Young DA. Assessing density-functional theory for equation-of-state. Computation. 2018;6(1):13. doi: 10.3390/computation6010013
  • Hardy R. Formulas for determining local properties in molecular-dynamics simulations: shock waves. J Chem Phys. 1982;76(1):622–628. doi: 10.1063/1.442714
  • Wood M, Cherukara M, Antillon E, et al. Molecular dynamics simulations of shock loading of materials: a review and tutorial. Rev Comput Chem. 2017;30:43–92. doi: 10.1002/9781119356059.ch2
  • Wen P, Tao G, Spearot D, et al. Molecular dynamics simulation of the shock response of materials: a tutorial. J Appl Phys. 2022;131(5). doi: 10.1063/5.0076266
  • Ma D, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the cocrfemnni high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 2015;100:90–97. doi: 10.1016/j.actamat.2015.08.050
  • Choi W, Jo Y, Sohn S, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Comput Mater. 2018;4(1):1–9. doi: 10.1038/s41524-017-0060-9
  • Liu B, Jian Z, Guo L, et al. Effect of crystallographic orientations on shock-induced plasticity for CoCrFeMnNi high-entropy alloy. Int J Mech Sci. 2022;226:107373. doi: 10.1016/j.ijmecsci.2022.107373
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Thompson A, Aktulga H, Berger R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171
  • Fang Q, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int J Plast. 2019;114:161–173. doi: 10.1016/j.ijplas.2018.10.014
  • Alhafez I, Ruestes C, Bringa E, et al. Nanoindentation into a high-entropy alloy–an atomistic study. J Alloys Compd. 2019;803:618–624. doi: 10.1016/j.jallcom.2019.06.277
  • Melia M, Carroll J, Whetten S, et al. Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit Manuf. 2019;29:100833. doi: 10.1016/j.addma.2019.100833
  • Bhattacharjee P, Sathiaraj G, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2014;587:544–552. doi: 10.1016/j.jallcom.2013.10.237
  • Stepanov N, Shaysultanov D, Salishchev G, et al. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiV x high entropy alloys. J Alloys Compd. 2015;628:170–185. doi: 10.1016/j.jallcom.2014.12.157
  • Owen L, Pickering E, Playford H, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2017;122:11–18. doi: 10.1016/j.actamat.2016.09.032
  • Kim Y, Yang S, Lee K. Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Sci Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-65073-2
  • Lin C, Wang C, Shieh S, et al. The role of intrinsic stacking fault in facilitating the pressure-induced phase transition in CoCrFeMnNi high entropy alloys. Mater Chem Phys. 2022;275:125273. doi: 10.1016/j.matchemphys.2021.125273
  • Chantawansri T, Sirk T, Byrd E, et al. Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics. J Chem Phys. 2012;137(20). doi: 10.1063/1.4767394
  • Luo S, An Q, Germann T, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates. J Appl Phys. 2009;106(1):013502. doi: 10.1063/1.3158062
  • Hahn E, Fensin S, Germann T, et al. Orientation dependent spall strength of tantalum single crystals. Acta Mater. 2018;159:241–248. doi: 10.1016/j.actamat.2018.07.073
  • Ackland G, Jones A. Applications of local crystal structure measures in experiment and simulation. Phys Rev B. 2006;73(5):054104. doi: 10.1103/PhysRevB.73.054104
  • Grady D, Chhabildas L, Reinhart W, et al. Dynamic equation of state and strength properties of unreacted PBXW-128 explosive. Albuquerque, NM (United States): Sandia National Lab.(SNL-NM); 1998. https://www.osti.gov/biblio/1331.
  • Latimer K, Dwaraknath S, Mathew K, et al. Evaluation of thermodynamic equations of state across chemistry and structure in the materials project. Npj Comput Mater. 2018;4(1):40. doi: 10.1038/s41524-018-0091-x
  • Dugdale J, MacDonald D. The thermal expansion of solids. Phys Rev. 1953;89(4):832–834. doi: 10.1103/PhysRev.89.832
  • Grady D. The spall strength of condensed matter. J Mech Phys Solids. 1988;36(3):353–384. doi: 10.1016/0022-5096(88)90015-4
  • Cerreta E, Gray GT, Lawson AC, et al. The influence of oxygen content on the α to ω phase transformation and shock hardening of titanium. J Appl Phys. 2006;100(1). doi: 10.1063/1.2209540
  • Tiamiyu AA, Szpunar JA, Odeshi AG. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: grain size effect. Mater Charact. 2019;154:7–19. doi: 10.1016/j.matchar.2019.05.027
  • Jiang J, Chen P, Qiu J, et al. Dynamic mechanical contact behaviors and sintering mechanism of Al nanoparticles subjected to high-speed impact. Mater Chem Phys. 2021;273:125111. doi: 10.1016/j.matchemphys.2021.125111
  • Mishra A, Lind J, Kumar M, et al. Understanding the phase transformation mechanisms that affect the dynamic response of Fe-based microstructures at the atomic scales. J Appl Phys. 2021;130(21). doi: 10.1063/5.0069935
  • Zhang NB, Xu J, Feng ZD, et al. Shock compression and spallation damage of high-entropy alloy Al 0.1CoCrFeNi. J Mater Sci Technol. 2022;128:1–9. doi: 10.1016/j.jmst.2022.02.056
  • Liu S, Feng G, Xiao L, et al. Shock-induced dynamic response in single and nanocrystalline high-entropy alloy FeNiCrCoCu. Int J Mech Sci. 2023;239:107859. doi: 10.1016/j.ijmecsci.2022.107859