1,353
Views
0
CrossRef citations to date
0
Altmetric
Report

Effect of matrix dislocation strengthening on deformation-induced martensitic transformation behavior of metastable high-entropy alloys

ORCID Icon, , , , , & show all
Pages 1-9 | Received 08 Sep 2023, Published online: 20 Nov 2023

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi:10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi:10.1016/j.pmatsci.2013.10.001
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–538. doi:10.1002/adem.200700240
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi:10.1126/science.1254581
  • Yao MJ, Pradeep KG, Tasan CC, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr Mater. 2014;72–73:5–8.
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765. doi:10.1016/j.intermet.2010.05.014
  • Senkov ON, Scott JM, Senkova SV, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd. 2011;509:6043–6048. doi:10.1016/j.jallcom.2011.02.171
  • Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys. Mater Res Lett. 2015;3:1–6. doi:10.1080/21663831.2014.951493
  • Zhao YJ, Qiao JW, Ma SG, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater Des. 2016;96:10–15. doi:10.1016/j.matdes.2016.01.149
  • Oh HS, Ma D, Leyson GP, et al. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy. 2016;18:321, doi:10.3390/e18090321
  • Li J, Yamanaka K, Chiba A. Calculation-driven design of off-equiatomic high-entropy alloys with enhanced solid-solution strengthening. Mater Sci Eng A. 2021;817:141359, doi:10.1016/j.msea.2021.141359
  • Yoshida S, Bhattacharjee T, Bai Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr Mater. 2017;134:33–36. doi:10.1016/j.scriptamat.2017.02.042
  • Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater. 2018;160:158–172. doi:10.1016/j.actamat.2018.08.053
  • Zhang Z, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143, doi:10.1038/ncomms10143
  • Shi Y, Yang B, Liaw PK. Corrosion-resistant high-entropy alloys: A review. Metals (Basel). 2017;7:43, doi:10.3390/met7020043
  • Luo H, Li Z, Mingers AM, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci. 2018;134:131–139. doi:10.1016/j.corsci.2018.02.031
  • Fujieda T, Shiratori H, Kuwabara K, et al. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater Lett. 2017;189:148–151. doi:10.1016/j.matlet.2016.11.026
  • Pao L, Nishimoto M, Muto I, et al. Electrochemical surface modification of Al8Co19Cr23Fe32Ni18 in H2SO4: A high-entropy alloy with high pitting corrosion resistance and high oxidation resistance. Mater Trans. 2023;64:2286–2295. doi:10.2320/matertrans.MT-M2023088
  • Guo JM, Zhou BC, Qiu S, et al. Achieving ultrahigh strength and ductility in high-entropy alloys via dual precipitation. J Mater Sci Technol. 2023;166:67–77. doi:10.1016/j.jmst.2023.05.021
  • Cao B, Yang T, Liu W, et al. Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review. MRS Bull. 2019;44:854–859. doi:10.1557/mrs.2019.255
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196. doi:10.1016/j.actamat.2015.08.076
  • Yang C, Bian H, Aoyagi K, et al. Synergetic strengthening in HfMoNbTaTi refractory high-entropy alloy via disordered nanoscale phase and semicoherent refractory particle. Mater Des. 2021;212:110248, doi:10.1016/j.matdes.2021.110248
  • Yang C, Bian H, Zhang F, et al. Competition between solid solution and multi-component Laves phase in a dual-phase refractory high-entropy alloy CrHfNbTaTi. Mater Des. 2023;226:111646, doi:10.1016/j.matdes.2023.111646
  • Lee S, Duarte MJ, Feuerbacher M, et al. Dislocation plasticity in FeCoCrMnNi high-entropy alloy: quantitative insights from in situ transmission electron microscopy deformation. Mater Res. Lett. 2020;8:216–224. doi:10.1080/21663831.2020.1741469
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016;534:227–230. doi:10.1038/nature17981
  • Li Z, Körmann F, Grabowski B, et al. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 2017;136:262–270. doi:10.1016/j.actamat.2017.07.023
  • Li Z, Tasan CC, Pradeep KG, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 2017;131:323–335. doi:10.1016/j.actamat.2017.03.069
  • Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 2011;59:4653–4664. doi:10.1016/j.actamat.2011.04.011
  • Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003;43:438–446. doi:10.2355/isijinternational.43.438
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application. Int J Plast. 2000;16:1391–1409. doi:10.1016/S0749-6419(00)00015-2
  • Otto F, Dlouhy A, Ch S, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi:10.1016/j.actamat.2013.06.018
  • Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016;118:152–163. doi:10.1016/j.actamat.2016.07.038
  • Joo SH, Kato H, Jang MJ, et al. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2017;689:122–133. doi:10.1016/j.msea.2017.02.043
  • Otto F, Hanold NL, George EP. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics. 2014;54:39–48. doi:10.1016/j.intermet.2014.05.014
  • Haghdadi N, Primig S, Annasamy M, et al. Dynamic recrystallization in AlXCoCrFeNi duplex high entropy alloys. J Alloys Compd. 2020;830:154720, doi:10.1016/j.jallcom.2020.154720
  • Wani IS, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater Sci Eng A. 2016;675:99–109. doi:10.1016/j.msea.2016.08.048
  • Stepanov ND, Shaysultanov DG, Chernichenko RS, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J Alloys Compd. 2017;693:394–405. doi:10.1016/j.jallcom.2016.09.208
  • Santos LA, Singh S, Rollett AD. Microstructure and texture evolution during thermomechanical processing of Al0.25CoCrFeNi high-entropy alloy. Metall Mater Trans A. 2019;50:5433–5444. doi:10.1007/s11661-019-05399-3
  • Chen S, Oh HS, Gludovatz B, et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat Commun. 2020;11:826, doi:10.1038/s41467-020-14641-1
  • Chen W, An X, Wang Z, et al. Grain size dependent deformation behavior of a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. J Alloys Compd. 2021;883:160876, doi:10.1016/j.jallcom.2021.160876
  • Mori M, Yamanaka K, Sato S, et al. Strengthening of biomedical Ni-free Co–Cr–Mo alloy by multipass “low-strain-per-pass” thermomechanical processing. Acta Biomater. 2015;28:215–224. doi:10.1016/j.actbio.2015.09.016
  • Lutterotti L, Chateigner D, Ferrari S, et al. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films. 2004;450:34–41. doi:10.1016/j.tsf.2003.10.150
  • Onuki Y, Sato S, Nakagawa M, et al. Strain-induced martensitic transformation and texture evolution in cold-rolled Co–Cr alloys. Quantum Beam Sci. 2018;2:11, doi:10.3390/qubs2020011
  • Wenk H-R, Lutterotti L, Vogel SC. Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr. 2010;25:283–296. doi:10.1154/1.3479004
  • Onuki Y, Hoshikawa A, Nishino S, et al. Rietveld texture analysis for metals having hexagonal close-packed phase by using time-of-flight neutron diffraction at iMATERIA. Adv Eng Mater. 2018;20:1700227, doi:10.1002/adem.201700227
  • Ishigaki T, Hoshikawa A, Yonemura M, et al. IBARAKI materials design diffractometer (iMATERIA)—Versatile neutron diffractometer at J-PARC. Nucl Instrum Methods Phys Res A. 2009;600:189–191. doi:10.1016/j.nima.2008.11.137
  • Onuki Y, Sato S. In situ observation for deformation-induced martensite transformation (DIMT) during tensile deformation of 304 stainless steel using neutron diffraction. PART I: mechanical response. Quantum Beam Sci. 2020;4:31, doi:10.3390/qubs4030031
  • Onuki Y, Sato S. In situ observation for deformation-induced martensite transformation during tensile deformation of SUS 304 stainless steel by using neutron diffraction PART II: transformation and texture formation mechanisms. Quantum Beam Sci. 2021;5:6, doi:10.3390/qubs5010006
  • Lutterotti L, Matthies S, Wenk HR, et al. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81:594–600. doi:10.1063/1.364220
  • Li X, Irving DL, Vitos L. First-principles investigation of the micromechanical properties of fcc-hcp polymorphic high-entropy alloys. Sci Rep. 2018;8:11196, doi:10.1038/s41598-018-29588-z
  • Mori M, Yamanaka K, Chiba A. Cold-rolling behavior of biomedical Ni-free Co–Cr–Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena. J Mech Behav Biomed Mater. 2016;55:201–214. doi:10.1016/j.jmbbm.2015.10.021
  • Kwon H, Harjo S, Kawasaki T, et al. Work hardening behavior of hot-rolled metastable Fe50Co25Ni10Al5Ti5Mo5 medium-entropy alloy: in situ neutron diffraction analysis. Sci Technol Adv Mater. 2022;23:579–586. doi:10.1080/14686996.2022.2122868
  • Jacques PJ. Transformation-induced plasticity for high strength formable steels. Curr Opin Solid State Mater Sci. 2004;8:259–265. doi:10.1016/j.cossms.2004.09.006
  • Lee S, Lee S-J, Cooman D, et al. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scr Mater. 2011;65:225–228. doi:10.1016/j.scriptamat.2011.04.010
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi:10.1126/science.1159610
  • Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007;55:6108–6118. doi:10.1016/j.actamat.2007.07.015
  • Mori M, Yamanaka K, Sato S, et al. Tuning strain-induced γ-to- ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. J Mech Behav Biomed Mater. 2019;90:523–529. doi:10.1016/j.jmbbm.2018.10.038
  • Yamanaka K, Mori M, Sato S, et al. Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci Rep. 2017;7:10808, doi:10.1038/s41598-017-10305-1
  • Liu J, Jin Y, Fang X, et al. Dislocation strengthening without ductility trade-off in metastable austenitic steels. Sci Rep. 2016;6:35345, doi:10.1038/srep35345
  • Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today. 2018;21:354–361. doi:10.1016/j.mattod.2017.11.004