1,347
Views
1
CrossRef citations to date
0
Altmetric
Original reports

On the formation and growth of grain boundary κ-carbides in austenitic high-Mn lightweight steels

, , , &
Pages 10-16 | Received 10 Aug 2023, Published online: 27 Nov 2023

References

  • Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scr. Mater. 2013;68:343–347. doi:10.1016/j.scriptamat.2012.08.038
  • Zuazo I, Hallstedt B, Lindahl B, et al. Low-density steels: complex metallurgy for automotive applications. JOM. 2014;66:1747–1758. doi:10.1007/s11837-014-1084-y
  • Gutierrez-Urrutia I. Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties. ISIJ Int. 2021;61:16–25. doi:10.2355/isijinternational.ISIJINT-2020-467
  • Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels. Steel Res Int. 2006;77:627–633. doi:10.1002/srin.200606440
  • Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure–property relations for low-density Fe-Mn-Al-C austenitic steels. JOM. 2014;66:1845–1856. doi:10.1007/s11837-014-1032-x
  • Yoo JD, Park KT. Microband-induced plasticity in a high Mn-Al-C light steel. Mater Sci Eng A. 2008;496:417–424. doi:10.1016/j.msea.2008.05.042
  • Elkot MN, Sun B, Zhou X, et al. Hydrogen-assisted decohesion associated with nanosized grain boundary κ-carbides in a high-Mn lightweight steel. Acta Mater. 2022;241:118392. doi:10.1016/j.actamat.2022.118392
  • Acselrad O, Kalashnikov IS, Silva EM, et al. Diagram of phase transformations in the austenite of hardened alloy Fe-28% Mn-8.5% Al-1% C-1.25% Si as a result of aging due to isothermal heating. Met Sci Heat Treat. 2006;48:543–553. doi:10.1007/s11041-006-0133-8
  • Choo WK, Kim JH, Yoon JC. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties. Acta Mater. 1997;45:4877–4885. doi:10.1016/S1359-6454(97)00201-2
  • Yao M. κ-carbide in a high-Mn light-weight steel: precipitation, off-stoichiometry and deformation. Aachen: RWTH Aachen; 2017.
  • Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe–Mn–Al–C low-density steel upon aging. Mater Sci Eng A. 2023;875:145109. doi:10.1016/j.msea.2023.145109
  • Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci. 2017;89:345–391. doi:10.1016/j.pmatsci.2017.05.002
  • Williams DB, Butler EP. Grain boundary discontinuous precipitation reactions. Int Met Rev. 1981;26:153–180. doi:10.1179/imr.1981.26.1.153
  • Cheng WC, Cheng CY, Hsu CW, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel. Mater Sci Eng A. 2015;642:128–135. doi:10.1016/j.msea.2015.06.096
  • Yao MJ, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Mater. 2017;140:258–273. doi:10.1016/j.actamat.2017.08.049
  • Tjong SC. Electron microscope observations of phase decompositions in an austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Mater Charact 1990;24:275–292. doi:10.1016/1044-5803(90)90055-O
  • Springer H, Raabe D. Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels. Acta Mater. 2012;60:4950–4959. doi:10.1016/j.actamat.2012.05.017
  • Feng Y, Song R, Pei Z, et al. Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe–24.8Mn–7.3Al–1.2C austenitic steel with κ-carbides precipitation. Met Mater Int. 2018;24:1012–1023. doi:10.1007/s12540-018-0112-9
  • Bentley AP. Ordering in Fe-Mn-Al-C austenite. J Mater Sci Lett. 1986;5:907–908. doi:10.1007/BF01729270
  • Chang KM, Chao CG, Liu TF. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy. Scr Mater. 2010;63:162–165. doi:10.1016/j.scriptamat.2010.03.038
  • Ji F, Song W, Ma Y, et al. Recrystallization behavior in a low-density high-Mn high-Al austenitic steel undergone thin strip casting process. Mater Sci Eng A. 2018;733:87–97. doi:10.1016/j.msea.2018.07.023
  • Paju M, Viefhaus H, Grabke HJ. Phosphorus segregation in austenite in Fe-P-C, Fe-P-B and Fe-P-C-B alloys. Steel Res. 1988;59:336–343. doi:10.1002/srin.198801524
  • Moody MP, Stephenson LT, Ceguerra AV, et al. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Tech. 2008;71:542–550. doi:10.1002/jemt.20582
  • Wang Z, Lu W, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels. Acta Mater. 2020;198:258–270. doi:10.1016/j.actamat.2020.08.003
  • Zhang J, Jiang Y, Zheng W, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel. Scr Mater 2021;199:113836. doi:10.1016/j.scriptamat.2021.113836
  • Hellman OC, du Rivage JB, Seidman DN. Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy. 2003;95:199–205. doi:10.1016/S0304-3991(02)00317-0
  • Yao MJ, Dey P, Seol JB, et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel. Acta Mater. 2016;106:229–238. doi:10.1016/j.actamat.2016.01.007
  • Sato K, Tagawa K, Inoue Y. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metall Trans A. 1990;21:5–11. doi:10.1007/BF02656419
  • Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy. Mater Sci Eng A. 1989;111:45–50. doi:10.1016/0921-5093(89)90196-2
  • Liebscher CH, Yao M, Dey P, et al. Tetragonal fcc-Fe induced by κ -carbide precipitates: atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Phys Rev Mater. 2018;2:1–6. doi:10.1103/PhysRevMaterials.2.023804
  • Zhi H, Li J, Li W, et al. Simultaneously enhancing strength-ductility synergy and strain hardenability via Si-alloying in medium-Al FeMnAlC lightweight steels. Acta Mater. 2023;245:118611. doi:10.1016/j.actamat.2022.118611
  • Aaron HB, Aaronson HI. Growth of grain boundary precipitates in Al-4% Cu by interfacial diffusion. Acta Metall. 1968;16:789–798. doi:10.1016/0001-6160(68)90097-7
  • Lim YS, Kim DJ, Hwang SS, et al. M23c6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater Charact 2014;96:28–39. doi:10.1016/j.matchar.2014.07.008