1,402
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Tensile deformation dominated by matrix dislocations at intermediate temperatures revealed using in-situ EBSD in superalloys

, ORCID Icon, , , , & show all
Pages 116-124 | Received 13 Nov 2023, Published online: 16 Jan 2024

References

  • Reed RC. The superalloys fundamentals and applications. Cambridge: Cambridge Univeisity Press; 2006.
  • Ru Y, Hu B, Zhao W, et al. Topologically inverse microstructure in single-crystal superalloys: microstructural stability and properties at ultrahigh temperature. Mater Res Lett. 2021;9(12):497–506. doi:10.1080/21663831.2021.1982785
  • Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power. 2006;22(2):361–374. doi:10.2514/1.18239
  • Eris R, Akdeniz MV, Mekhrabov AO. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys. Intermetallics. 2019;109:37–47. doi:10.1016/j.intermet.2019.02.017
  • Reed RC, Rae CMF. 22 - Physical metallurgy of the nickel-based superalloys. In: Laughlin DE, Hono K, editor. Physical metallurgy (fifth edition). Oxford: Elsevier; 2014. p. 2215–2290.
  • Heckl A, Neumeier S, Göken M, et al. The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater Sci Eng A. 2011;528(9):3435–3444. doi:10.1016/j.msea.2011.01.023
  • Nembach E, Neite G. Precipitation hardening of superalloys by ordered γ′-particles. Prog Mater Sci. 1985;29(3):177–319. doi:10.1016/0079-6425(85)90001-5
  • Owusu-Boahen K, Bamberger M, Dirnfeld SF, et al. Precipitation hardening in nickel based superalloys: effect of alloying. Mater Sci Technol. 1996;12(4):290–294. doi:10.1179/mst.1996.12.4.290
  • Zhao W, Sun Z, Gong S. Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: a first-principles study. Acta Mater. 2017;135:25–34. doi:10.1016/j.actamat.2017.05.074
  • Chen K, Zhao LR, Tse JS. A first-principles survey of γ/γ′ interface strengthening by alloying elements in single crystal Ni–base superalloys. Mater Sci Eng A. 2004;365(1):80–84. doi:10.1016/j.msea.2003.09.009
  • Benyoucef M, Clement N, Coujou A. TEM in situ straining of the MC2 superalloy at room temperature. Philos Mag A. 1995;72(4):1043–1056. doi:10.1080/01418619508239952
  • Zhao Y, Li N, Wang L, et al. High-temperature creep-induced site occupation evolution in the γ′ lattice in a Ru-bearing Ni-based superalloy. Mater Res Lett. 2023;11(10):888–895. doi:10.1080/21663831.2023.2254910
  • Smith TM, Zarkevich NA, Egan AJ, et al. Utilizing local phase transformation strengthening for nickel-base superalloys. Commun Mater. 2021;2(1):106. doi:10.1038/s43246-021-00210-6
  • Smith TM, Esser BD, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys. Nat Commun. 2016;7:13434. doi:10.1038/ncomms13434
  • Dye D, Ma A, Reed R. Numerical modelling of creep deformation in a CMSX-4 single crystal superalloy turbine blade. Superalloy. 2008;2008:911–919.
  • Rezazadeh Reyhani M, Alizadeh M, Fathi A, et al. Turbine blade temperature calculation and life estimation - a sensitivity analysis. Propuls Power Res. 2013;2(2):148–161. doi:10.1016/j.jppr.2013.04.004
  • Barba D, Alabort E, Pedrazzini S, et al. On the microtwinning mechanism in a single crystal superalloy. Acta Mater. 2017;135:314–329. doi:10.1016/j.actamat.2017.05.072
  • Li YM, Tan ZH, Wang XG, et al. Stress rupture anisotropy of a Ru-containing fourth-generation single crystal superalloy at 760 °C and 1100 °C. Mater Sci Eng A. 2022;856:144006. doi:10.1016/j.msea.2022.144006
  • Ding Q, Bei H, Yao X, et al. Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy. Appl Mater Today. 2021;23:101061. doi:10.1016/j.apmt.2021.101061
  • Yang W, Qu P, Liu C, et al. Temperature dependence of compressive behavior and deformation microstructure of a Ni-based single crystal superalloy with low stacking fault energy. Trans Nonferrous Met Soc China. 2023;33(1):157–167. doi:10.1016/S1003-6326(22)66097-7
  • Zhang Y, Wang X, Li J, et al. The low-cycle fatigue deformation mechanisms of two single crystal superalloys at room temperature and 600 °C. Scripta Mater. 2019;171:122–125. doi:10.1016/j.scriptamat.2019.06.033
  • Wang XG, Liu JL, Liu JD, et al. Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature. Scripta Mater. 2018;152:94–97. doi:10.1016/j.scriptamat.2018.04.020
  • Tan Z, Wang X, Pang J, et al. Pore-induced defects during thermo-mechanical fatigue of a fourth-generation single crystal superalloy. Mater Res Lett. 2023;11(8):678–687. doi:10.1080/21663831.2023.2223558
  • Chen QZ, Knowles DM. Mechanism of 〈112〉/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750 °C and 750 MPa. Mater Sci Eng A. 2003;356(1-2):352–367. doi:10.1016/s0921-5093(03)00148-5
  • Knowles DM, Gunturi S. The role of 〈112〉{111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater Sci Eng A. 2002;328(1):223–237. doi:10.1016/S0921-5093(01)01688-4
  • Viswanathan GB, Shi R, Genc A, et al. Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scripta Mater. 2015;94:5–8. doi:10.1016/j.scriptamat.2014.06.032
  • Yuan Y, Gu YF, Osada T, et al. Deformation mechanisms in a new disc superalloy at low and intermediate temperatures. Scripta Mater. 2012;67(2):137–140. doi:10.1016/j.scriptamat.2012.03.042
  • Gao Z, Zhang P, Li J, et al. Tunning the tensile deformation behavior and mechanism of nickel-based superalloy CM247LC by adjusting ageing treatment. Mater Res Lett. 2023;11(12):1013–1021. doi:10.1080/21663831.2023.2276340
  • Condat M, Décamps B. Shearing of γ′ precipitates by single a/2<110〉 matrix dislocations in a γ/γ′ Ni-based superalloy. Scr Metall. 1987;21(5):607–612. doi:10.1016/0036-9748(87)90369-3
  • Décamps B, Morton AJ, Condat M. On the mechanism of shear of γ′ precipitates by single (a/2)<110〉 dissociated matrix dislocations in Ni-based superalloys. Philos Mag A. 1991;64(3):641–668. doi:10.1080/01418619108204866
  • Bai JM, Zhang HP, Liu JT, et al. Temperature dependence of tensile deformation mechanisms in a powder metallurgy Ni–Co–Cr based superalloy with Ta addition. Mater Sci Eng A. 2022;856:143965. doi:10.1016/j.msea.2022.143965
  • Wang XG, Liu JL, Jin T, et al. The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures. Mater Des. 2014;63:286–293. doi:10.1016/j.matdes.2014.06.009
  • Drew GL, Reed RC, Kakehi K, et al., editors. Single crystal superalloys: the transition from primary to secondary creep. Superalloys 2004; 2004. pp. 127–136.
  • Qu P, Yang W, Qin J, et al. Reveal the stacking fault shearing mechanism by its annihilation process in Ni-based single crystal superalloys. Mater Charact. 2021;180:111419. doi:10.1016/j.matchar.2021.111419
  • Zhang P, Li J, Yuan Y, et al. Correlation the 〈112〉{111} slip with high-temperature tension/compression asymmetry in the single-crystal nickel-based superalloy PWA1483. Mater Res Lett. 2023;11(6):399–406. doi:10.1080/21663831.2023.2166432
  • MacKay RA, Maier RD. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals. Metall Trans A. 1982;13(10):1747–1754. doi:10.1007/BF02647830
  • Qu P, Yang W, Liu C, et al. Creep anisotropy dominated by orientation rotation in Ni-based single crystal superalloys at 750 °C/750 MPa. J Mater Sci Technol. 2024;186:91–103. doi:10.1016/j.jmst.2023.10.055
  • Li Y, Wang L, Zhang G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850 °C. Mater Sci Eng A. 2019;760:26–36. doi:10.1016/j.msea.2019.05.075
  • Adams BL, Kalidindi SR, Fullwood DT. Chapter 2 - tensors and rotations. In: Adams BL, Kalidindi SR, Fullwood DT, editor. Microstructure sensitive design for performance optimization. Boston: Butterworth-Heinemann; 2013. p. 23–44.
  • Beausir B, Fundenberger JJ. Analysis tools for electron and X-ray diffraction, ATEX-software. Eu, Université de Lorraine-Metz, France; 2017.
  • Han JH, Kim DI, Jee KK, et al. In-situ orientation rotation behavior study during tensile deformation of aluminum single crystal and polycrystal. Mater Sci Forum. 2004: 449–452: 593-596. doi:10.4028/www.scientific.net/MSF.449-452.593
  • Qu P, Yang W, Liu C, et al. The asynchrony of orientation rotation at 750 °C/750 MPa creep in a [011]-oriented Ni-based single crystal superalloy. Mater Sci Eng A. 2023;869:144823. doi:10.1016/j.msea.2023.144823
  • Chen J, Lu J, Cai W, et al. In-situ study of adjacent grains slip transfer of Inconel 718 during tensile process at high temperature. Int J Plast. 2023;163:103554. doi:10.1016/j.ijplas.2023.103554
  • Guo G, Jiang W, Liu X, et al. In-situ SEM-EBSD investigation of the low-cycle fatigue deformation behavior of Inconel 718 at grain-scale. J Mater Res Technol. 2023;24:5007–5023. doi:10.1016/j.jmrt.2023.04.143
  • Li F, Jiang W, Lu J, et al. In situ EBSD study of formation and propagation of deformation bands in a single-crystal superalloy during tensile deformation. J Mater Sci. 2023;58(26):10764–10781. doi:10.1007/s10853-023-08681-3
  • Ren X, Lu J, Zhou J, et al. In-situ fatigue behavior study of a nickel-based single-crystal superalloy with different orientations. Mater Sci Eng A. 2022;855:143913. doi:10.1016/j.msea.2022.143913
  • Yang B, Shi C, Lai R, et al. Identification of active slip systems in polycrystals by Slip Trace - Modified Lattice Rotation Analysis (ST-MLRA). Scripta Mater. 2022;214:114648. doi:10.1016/j.scriptamat.2022.114648
  • Yang B, Shi C, Ye X, et al. Underlying slip/twinning activities of Mg-xGd alloys investigated by modified lattice rotation analysis. J Magnes Alloy. 2023;11(3):998–1015. doi:10.1016/j.jma.2021.06.008
  • Gu T, Xu Y, Gourlay CM, et al. In-situ electron backscatter diffraction of thermal cycling in a single grain Cu/Sn-3Ag-0.5Cu/Cu solder joint. Scripta Mater. 2020;175:55–60. doi:10.1016/j.scriptamat.2019.09.003
  • Miner RV, Voigt RC, Gayda J, et al. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part I. Tensile behavior. Metall Trans A. 1986;17(3):491–496. doi:10.1007/BF02643955
  • Zhang W, Lu J, Wang J, et al. In-situ EBSD study of deformation behavior of Inconel 740H alloy at high-temperature tensile loading. J Alloys Compd. 2020;820:153424. doi:10.1016/j.jallcom.2019.153424
  • Li XW, Wang ZG, Li SX. Cyclic deformation behavior of double-slip-oriented copper single crystals I: coplanar double slip orientation on 011-11 side of the stereographic triangle. Mater Sci Eng A. 1999;260(1):132–138. doi:10.1016/S0921-5093(98)00974-5
  • Li XW, Wang ZG, Li SX. Cyclic deformation behavior of double-slip-oriented copper single crystals: II. Critical double slip orientation on 001/011 side of the stereographic triangle. Mater Sci Eng A. 1999;265(1):18–24. doi:10.1016/S0921-5093(99)00008-8
  • Li XW, Wang ZG, Li SX. Cyclic deformation behavior of double-slip-oriented copper single crystals III: conjugate double slip orientation on 001–11 side of the stereographic triangle. Mater Sci Eng A. 1999;269(1):166–174. doi:10.1016/S0921-5093(99)00154-9
  • Kumar N, Joseph AS, Mehrotra P, et al. An improved dislocation density reliant model to address the creep deformation of reduced activation ferritic martensitic steel. Forces in Mechanics. 2022;9:100117. doi:10.1016/j.finmec.2022.100117
  • Yadav SD, Sonderegger B, Stracey M, et al. Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach. Mater Sci Eng A. 2016;662:330–341. doi:10.1016/j.msea.2016.03.071
  • Kumar N, Yadav SD. Microstructure Based Flow Stress Modelling of Superalloy 718. Solid State Phenomena. 2023;353:103–108. doi:10.4028/p-ALg9Hs
  • Joseph AS, Gupta P, Kumar N, et al. An advanced dislocation density-based approach to model the tensile flow behaviour of a 64.7Ni–31.96Cu alloy. Philos Mag. 2022;102(15):1481–1504. doi:10.1080/14786435.2022.2056645