3,154
Views
0
CrossRef citations to date
0
Altmetric
Brief Overview

Additive manufacturing of metals and alloys to achieve heterogeneous microstructures for exceptional mechanical properties

, , & ORCID Icon
Pages 149-171 | Received 04 Dec 2023, Published online: 30 Jan 2024

References

  • Zhu Y, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31. doi:10.1080/21663831.2020.1796836
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5:527–532. doi:10.1080/21663831.2017.1343208
  • Zhu Y, Wu X. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Shi P, Li R, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science. 2021;373:912–918. doi:10.1126/science.abf6986
  • Liu Y, Xu M, Xiao L, et al. Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy. Mater Res Lett. 2023;11:638–647. doi:10.1080/21663831.2023.2208166
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505. doi:10.1073/pnas.1517193112
  • Liu Y, Cao Y, Mao Q, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Mater. 2020;189:129–144. doi:10.1016/j.actamat.2020.03.001
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7:393–398.
  • Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424. doi:10.1080/14786437008238426
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151. doi:10.1080/21663831.2016.1153004
  • Nematollahi M, Jahadakbar A, Mahtabi MJ, et al. 12 – additive manufacturing (AM). In: Niinomi M, editor. Metals for biomedical devices (Second Edition) [Internet]. Woodhead Publishing; 2019 [cited 2023 Nov 5]. p. 331–353. Available from: https://www.sciencedirect.com/science/article/pii/B9780081026663000122.
  • Liu Z, He B, Lyu T, et al. A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti-6Al-4V. JOM. 2021;73:1804–1818. doi:10.1007/s11837-021-04670-6
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. Appl Phys Rev 2015;2:041101. doi:10.1063/1.4935926
  • Dávila JL, Neto PI, Noritomi PY, et al. Hybrid manufacturing: a review of the synergy between directed energy deposition and subtractive processes. Int J Adv Manuf Technol. 2020;110:3377–3390. doi:10.1007/s00170-020-06062-7
  • Chen H, Liu Z, Cheng X, et al. Laser deposition of graded γ-TiAl/Ti2AlNb alloys: microstructure and nanomechanical characterization of the transition zone. J Alloys Compd. 2021;875:159946. doi:10.1016/j.jallcom.2021.159946
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–71. doi:10.1038/nmat5021
  • Mostafaei A, Ghiaasiaan R, Ho I-T, et al. Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi:10.1016/j.pmatsci.2023.101108
  • Wang T, Tang H-B, Zhu Y-Y, et al. Laser additive manufacturing of new α+β titanium alloy with high strength and ductility. J Mater Res Technol. 2023;26:7566–7582. doi:10.1016/j.jmrt.2023.09.113
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature. 2020;582:515–519. doi:10.1038/s41586-020-2409-3
  • Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp. 2021;16:347–371. doi:10.1080/17452759.2021.1928520
  • Todaro CJ, Easton MA, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun. 2020;11:142. doi:10.1038/s41467-019-13874-z
  • Karthik GM, Kim HS. Heterogeneous aspects of additive manufactured metallic parts: a review. Met Mater Int. 2021;27:1–39. doi:10.1007/s12540-020-00931-2
  • Liu P, Wang Z, Xiao Y, et al. Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing. Addit Manuf. 2019;26:22–29. doi:10.1016/j.addma.2018.12.019
  • Li B, Fu J, Feng J, et al. Review of heterogeneous material objects modeling in additive manufacturing. Vis Comput Ind Biomed Art. 2020;3:6. doi:10.1186/s42492-020-0041-6
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater. 2020;5:706–723. doi:10.1038/s41578-020-0212-2
  • Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science [Internet]. 2021 [cited 2021 May 28];372. Available from: https://science.sciencemag.org/content/372/6545/eabg1487
  • Gibson I, Rosen D, Stucker B, et al. Additive manufacturing technologies [Internet]. Cham: Springer International Publishing; 2021 [cited 2023 Oct 19]. Available from: https://link.springer.com/10.1007978-3-030-56127-7.
  • Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science. 2021;374:478–482. doi:10.1126/science.abj3770
  • Tan C, Liu Y, Weng F, et al. Additive manufacturing of voxelized heterostructured materials with hierarchical phases. Addit Manuf. 2022;54:102775. doi:10.1016/j.addma.2022.102775
  • Xu G, Song C, Zhang H, et al. Spatially heterogeneous microstructure in in-situ TiO-reinforced Ti6Al4V/316L functionally graded material fabricated via directed energy deposition. Addit Manuf. 2022;59:103178. doi:10.1016/j.addma.2022.103178
  • Yang Z, Wang S, Zhu L, et al. Manipulating molten pool dynamics during metal 3D printing by ultrasound. Appl Phys Rev. 2022;9:021416. doi:10.1063/5.0082461
  • Nie MH, Zhou YX, Jiang PF, et al. Achieving illustrious friction on a directed energy deposition 316/NiTi heterogeneous alloy with bionic Ni interlayer. Appl Surf Sci. 2023;638:158107. doi:10.1016/j.apsusc.2023.158107
  • Yeoh YC, Macchi G, Jain E, et al. Multiscale microstructural heterogeneity and mechanical property scatter in Inconel 718 produced by directed energy deposition. J Alloys Compd. 2021;887:161426. doi:10.1016/j.jallcom.2021.161426
  • Wei C, Li L. Multi-material 3D printing based on modified LPBF. Laser Systems Europe. 2020:26–28.
  • Guan S, Wan D, Solberg K, et al. Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy. Scr Mater. 2020;183:133–138. doi:10.1016/j.scriptamat.2020.03.032
  • Tan C, Chew Y, Duan R, et al. Additive manufacturing of multi-scale heterostructured high-strength steels. Mater Res Lett. 2021;9:291–299. doi:10.1080/21663831.2021.1904299
  • Wei C, Chueh Y-H, Zhang X, et al. Easy-to-remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion. J Manuf Sci Eng. 2019;141:071002. doi:10.1115/1.4043536
  • Wei C, Li L, Zhang X, et al. 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 2018;67:245–248. doi:10.1016/j.cirp.2018.04.096
  • Li B, Zhang W, Shen J, et al. Micro-laminated CoCrFeMnNi−TiNp/CoCrFeMnNi high-entropy alloy matrix composite with bimodal grain structure via multi-material selective laser melting (MM-SLM) additive manufacturing. Comp Comm. 2022;36:101366. doi:10.1016/j.coco.2022.101366
  • Jeong SG, Karthik GM, Kim ES, et al. Architectured heterogeneous alloys with selective laser melting. Scr Mater. 2022;208:114332. doi:10.1016/j.scriptamat.2021.114332
  • Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater Lett. 2019;252:88–91. doi:10.1016/j.matlet.2019.05.108
  • Ghanavati R, Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: a review of experimental and numerical studies. J Mater Res Technol. 2021;13:1628–1664.
  • Loh GH, Pei E, Harrison D, et al. An overview of functionally graded additive manufacturing. Addit Manuf. 2018;23:34–44. doi:10.1016/j.addma.2018.06.023
  • Fan J, Zhu L, Lu J, et al. Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scr Mater. 2020;184:41–45. doi:10.1016/j.scriptamat.2020.03.045
  • Loh GH, Pei E, Harrison D, et al. An overview of functionally graded additive manufacturing. Addit Manuf. 2018;23:34–44. doi:10.1016/j.addma.2018.06.023
  • Oxman N. Variable property rapid prototyping: inspired by nature, where form is characterized by heterogeneous compositions, the paper presents a novel approach to layered manufacturing entitled variable property rapid prototyping. Virtual Phys Prototyp. 2011;6:3–31. doi:10.1080/17452759.2011.558588
  • Li L, Wang J, Lin P, et al. Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition. Ceram Int. 2017;43:16638–16651. doi:10.1016/j.ceramint.2017.09.054
  • Su Y, Chen B, Tan C, et al. Influence of composition gradient variation on the microstructure and mechanical properties of 316 L/Inconel718 functionally graded material fabricated by laser additive manufacturing. J Mater Process Technol. 2020;283:116702. doi:10.1016/j.jmatprotec.2020.116702
  • Zhang X, Chen Y, Liou F. Fabrication of SS316L-IN625 functionally graded materials by powder-fed directed energy deposition. Sci Technol Weld Joining. 2019;24:504–516. doi:10.1080/13621718.2019.1589086
  • Ma J, Zhang Y, Li J, et al. Microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloys. Mater Sci Eng A. 2021;811:140984. doi:10.1016/j.msea.2021.140984
  • Zhu Y, Li J, Tian X, et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing. Mater Sci Eng A. 2014;607:427–434. doi:10.1016/j.msea.2014.04.019
  • Tan C, Chew Y, Bi G, et al. Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength. J Mater Sci Technol. 2021;72:217–222. doi:10.1016/j.jmst.2020.07.044
  • Hu Z, Ma Z, Yu L, et al. Functionally graded materials with grain-size gradients and heterogeneous microstructures achieved by additive manufacturing. Scr Mater. 2023;226:115197. doi:10.1016/j.scriptamat.2022.115197
  • Caiazzo F, Alfieri V, Campanelli SL, et al. Additive manufacturing and mechanical testing of functionally-graded steel strut-based lattice structures. J Manuf Process. 2022;83:717–728. doi:10.1016/j.jmapro.2022.09.031
  • Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16:57–67. doi:10.5301/jabfm.5000371
  • Zhang M, Liu C, Shi X, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting. Appl Sci. 2016;6:304. doi:10.3390/app6110304
  • Yuan D, Sun X, Sun L, et al. Improvement of the grain structure and mechanical properties of austenitic stainless steel fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration. Mater Sci Eng A. 2021;813:141177. doi:10.1016/j.msea.2021.141177
  • Gao S, Li Z, Van Petegem S, et al. Additive manufacturing of alloys with programmable microstructure and properties. Nat Commun. 2023;14:6752. doi:10.1038/s41467-023-42326-y
  • Zou Z, Simonelli M, Katrib J, et al. Refinement of the grain structure of additive manufactured titanium alloys via epitaxial recrystallization enabled by rapid heat treatment. Scr Mater. 2020;180:66–70. doi:10.1016/j.scriptamat.2020.01.027
  • Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271–295. doi:10.1016/j.mattod.2021.03.020
  • Scipioni Bertoli U, Guss G, Wu S, et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater Des. 2017;135:385–396. doi:10.1016/j.matdes.2017.09.044
  • Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure–property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci Rep. 2021;11:6423. doi:10.1038/s41598-021-85047-2
  • Ho A, Zhao H, Fellowes JW, et al. On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Mater. 2019;166:306–323. doi:10.1016/j.actamat.2018.12.038
  • Liu X, Zhao C, Zhou X, et al. Microstructure of selective laser melted AlSi10Mg alloy. Mater Des. 2019;168:107677. doi:10.1016/j.matdes.2019.107677
  • Liu CM, Tian XJ, Tang HB, et al. Microstructural characterization of laser melting deposited Ti–5Al-5Mo–5V–1Cr–1Fe near β titanium alloy. J Alloys Compd. 2013;572:17–24. doi:10.1016/j.jallcom.2013.03.243
  • Zhu Y, Tian X, Li J, et al. Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. J Alloys Compd. 2014;616:468–474. doi:10.1016/j.jallcom.2014.07.161
  • Thijs L, Kempen K, Kruth J-P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia [Internet]. 2013 [cited 2020 Oct 2]; Available from: http://journals.scholarsportal.info/detailsundefined
  • Wu J, Wang XQ, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 2016;117:311–320. doi:10.1016/j.actamat.2016.07.012
  • Chen B, Moon SK, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater. 2017;141:45–49. doi:10.1016/j.scriptamat.2017.07.025
  • Liu Q, Wu H, Paul MJ, et al. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms. Acta Mater. 2020;201:316–328. doi:10.1016/j.actamat.2020.10.010
  • Delahaye J, Tchuindjang JT, Lecomte-Beckers J, et al. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by selective laser melting. Acta Mater. 2019;175:160–170. doi:10.1016/j.actamat.2019.06.013
  • Macías JGS, Douillard T, Zhao L, et al. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Acta Mater. 2020;201:231–243. doi:10.1016/j.actamat.2020.10.001
  • Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021;211:116869. doi:10.1016/j.actamat.2021.116869
  • Chen H, Patel S, Vlasea M, et al. Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scr Mater. 2022;221:114954. doi:10.1016/j.scriptamat.2022.114954
  • Shi S, Lin X, Wang L, et al. Investigations of the processing–structure–performance relationships of an additively manufactured AlSi10Mg alloy via directed energy deposition. J Alloys Compd. 2023;944:169050. doi:10.1016/j.jallcom.2023.169050
  • Zhang H, Zhu H, Nie X, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater. 2017;134:6–10. doi:10.1016/j.scriptamat.2017.02.036
  • Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting – ScienceDirect [Internet] [cited 2023 Sep 25]. Available from: https://www-sciencedirect-com.myaccess.library.utoronto.ca/science/article/pii/S0264127516314277.
  • Nezhadfar PD, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: effects of build orientation on microstructure, porosity, and fatigue behavior. Addit Manuf. 2021;47:102292. doi:10.1016/j.addma.2021.102292
  • Shakil SI, González-Rovira L, Cabrera-Correa L, et al. Insights into laser powder bed fused Scalmalloy®: investigating the correlation between micromechanical and macroscale properties. J Mater Res Technol. 2023;25:4409–4424. doi:10.1016/j.jmrt.2023.06.228
  • Kuo CN, Peng PC, Liu DH, et al. Microstructure evolution and mechanical property response of 3D-printed Scalmalloy with different heat-treatment times at 325°C. Metals (Basel). 2021;11:555. doi:10.3390/met11040555
  • Cabrera-Correa L, González-Rovira L, de Dios López-Castro J, et al. Effect of the heat treatment on the mechanical properties and microstructure of Scalmalloy® manufactured by Selective Laser Melting (SLM) under certified conditions. Mater Charact. 2023;196:112549. doi:10.1016/j.matchar.2022.112549
  • Awd M, Tenkamp J, Hirtler M, et al. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials (Basel). 2018;11:17. doi:10.3390/ma11010017
  • Wang Z, Lin X, Kang N, et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure. Addit Manuf. 2020;34:101260. doi:10.1016/j.addma.2020.101260
  • Spierings AB, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition. Addit Manuf. 2018;20:173–181. doi:10.1016/j.addma.2017.12.011
  • Yang KV, Shi Y, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr Mater. 2018;145:113–117. doi:10.1016/j.scriptamat.2017.10.021
  • Wang Z, Lin X, Kang N, et al. Directed energy deposition additive manufacturing of a Sc/Zr-modified Al–Mg alloy: effect of thermal history on microstructural evolution and mechanical properties. Mater Sci Eng A. 2021;802:140606. doi:10.1016/j.msea.2020.140606
  • Wang D, Feng Y, Liu L, et al. Influence mechanism of process parameters on relative density, microstructure, and mechanical properties of low Sc-content Al-Mg-Sc-Zr alloy fabricated by selective laser melting. Chin J Mech Eng Addit Manuf Front. 2022;1:100034. doi:10.1016/j.cjmeam.2022.100034
  • Wang Z, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40–56. doi:10.1016/j.jmst.2021.03.069
  • Spierings AB, Dawson K, Uggowitzer PJ, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys. Mater Des. 2018;140:134–143. doi:10.1016/j.matdes.2017.11.053
  • Wang Z, Lin X, Wang J, et al. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit Manuf. 2022;59:103093. doi:10.1016/j.addma.2022.103093
  • Jia Q, Rometsch P, Cao S, et al. Towards a high strength aluminium alloy development methodology for selective laser melting. Mater Des. 2019;174:107775. doi:10.1016/j.matdes.2019.107775
  • Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al Mn Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108–118. doi:10.1016/j.actamat.2019.04.014
  • Montero-Sistiaga ML, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437–445. doi:10.1016/j.jmatprotec.2016.08.003
  • Sun J, Gao L, Liu Q, et al. Novel isotropic mechanical properties of laser powder-bed fusion Sc/Zr modified Al alloy. Mater Sci Eng A. 2023;872:145003. doi:10.1016/j.msea.2023.145003
  • Croteau JR, Griffiths S, Rossell MD, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Mater. 2018;153:35–44. doi:10.1016/j.actamat.2018.04.053
  • Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit Manuf. 2021;41:101966. doi:10.1016/j.addma.2021.101966
  • Wang Y, Li R, Yuan T, et al. Microstructure and mechanical properties of Al-Fe-Sc-Zr alloy additively manufactured by selective laser melting. Mater Charact. 2021;180:111397. doi:10.1016/j.matchar.2021.111397
  • Yang Z, Chen C, Li D, et al. An additively manufactured heat-resistant Al-Ce-Sc-Zr alloy: microstructure, mechanical properties and thermal stability. Mater Sci Eng A. 2023;872:144965. doi:10.1016/j.msea.2023.144965
  • Zhou L, Hyer H, Park S, et al. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion. Addit Manuf. 2019;28:485–496. doi:10.1016/j.addma.2019.05.027
  • Yang W, Jung Y-G, Kwak T, et al. Microstructure and mechanical properties of an Al–Mg–Si–Zr alloy processed by L-PBF and subsequent heat treatments. Materials (Basel). 2022;15:5089. doi:10.3390/ma15155089
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98. doi:10.1016/j.actamat.2020.03.060
  • Zhu Z, Ng FL, Seet HL, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Mater Today. 2022;52:90–101. doi:10.1016/j.mattod.2021.11.019
  • Zhang H, Zhu H, Nie X, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater. 2017;134:6–10. doi:10.1016/j.scriptamat.2017.02.036
  • Zhou L, Pan H, Hyer H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion. Scr Mater. 2019;158:24–28. doi:10.1016/j.scriptamat.2018.08.025
  • Aboulkhair NT, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng A. 2016;667:139–146. doi:10.1016/j.msea.2016.04.092
  • Hadadzadeh A, Amirkhiz BS, Mohammadi M. Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg. Mater Sci Eng A. 2019;739:295–300. doi:10.1016/j.msea.2018.10.055
  • Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A. 2016;663:116–125. doi:10.1016/j.msea.2016.03.088
  • Wei P, Wei Z, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior. Appl Surf Sci. 2017;408:38–50. doi:10.1016/j.apsusc.2017.02.215
  • Hadadzadeh A, Baxter C, Amirkhiz BS, et al. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: comparison between virgin and recycled powders. Addit Manuf. 2018;23:108–120. doi:10.1016/j.addma.2018.07.014
  • Kempen K, Thijs L, Humbeeck JV, et al. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater Sci Technol. 2015;31:917–923. doi:10.1179/1743284714Y.0000000702
  • EOS Aluminium AlSi10Mg Material Data Sheet. EOS.
  • Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships [Internet]. [cited 2023 Sep 25]. Available from: https://www.tandfonline.com/doi/epdf/10.1179imr.1995.40.6.221?needAccess=true.
  • Filatov Y, Yelagin VI, Zakharov VV. New Al–Mg–Sc alloys. Mater Sci Eng A. 2000;280:97–101. doi:10.1016/S0921-5093(99)00673-5
  • Polmear I, StJohn D, Nie J-F, et al. 4 – wrought aluminium alloys. In: Polmear I, StJohn D, Nie J-F, et al., editors. Light alloys (Fifth Edition) [Internet]. Boston: Butterworth-Heinemann; 2017 [cited 2023 Sep 25]. p. 157–263. Available from: https://www.sciencedirect.com/science/article/pii/B978008099431400004X.
  • Parimi LL, Ravi G, Clark D, et al. Microstructural and texture development in direct laser fabricated IN718. Mater Charact. 2014;89:102–111. doi:10.1016/j.matchar.2013.12.012
  • Huang W, Lin X. Research progress in laser solid forming of high-performance metallic components at the state key laboratory of solidification processing of China. 3D Print Addit Manuf. 2014;1:156–165. doi:10.1089/3dp.2014.0016
  • Blackwell PL. The mechanical and microstructural characteristics of laser-deposited IN718. J Mater Process Technol. 2005;170:240–246. doi:10.1016/j.jmatprotec.2005.05.005
  • Yeoh YC, Macchi G, Jain E, et al. Multiscale microstructural heterogeneity and mechanical property scatter in Inconel 718 produced by directed energy deposition. J Alloys Compd. 2021;887:161426. doi:10.1016/j.jallcom.2021.161426
  • Xu L, Chai Z, Zhang X, et al. A new approach to improve strength and ductility of laser powder deposited Inconel 718 thin-wall structure. Mater Sci Eng A. 2022;855:143871. doi:10.1016/j.msea.2022.143871
  • Bhattacharya S, Dinda GP, Dasgupta AK, et al. A comparative study of microstructure and mechanical behavior of CO2 and diode laser deposited Cu–38Ni alloy. J Mater Sci. 2014;49:2415–2429. doi:10.1007/s10853-013-7883-7
  • He B, Li J, Cheng X, et al. Brittle fracture behavior of a laser additive manufactured near-β titanium alloy after low temperature aging. Mater Sci Eng A. 2017;699:229–238. doi:10.1016/j.msea.2017.05.050
  • Zhu Y, Liu D, Tian X, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater Des. 2014;56:445–453. doi:10.1016/j.matdes.2013.11.044
  • Wang T, Zhu YY, Zhang SQ, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J Alloys Compd. 2015;632:505–513. doi:10.1016/j.jallcom.2015.01.256
  • Zhang Q, Chen J, Lin X, et al. Grain morphology control and texture characterization of laser solid formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy. J Mater Process Technol. 2016;238:202–211. doi:10.1016/j.jmatprotec.2016.07.011
  • Qiu C, Ravi GA, Attallah MM. Microstructural control during direct laser deposition of a β-titanium alloy. Mater Des. 2015;81:21–30. doi:10.1016/j.matdes.2015.05.031
  • Qi M, Huang S, Ma Y, et al. Columnar to equiaxed transition during β heat treatment in a near β alloy by laser additive manufacture. J Mater Res Technol. 2021;13:1159–1168. doi:10.1016/j.jmrt.2021.05.057
  • Zhu Y-Y, Tang H-B, Li Z, et al. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys. J Alloys Compd. 2019;777:712–716. doi:10.1016/j.jallcom.2018.11.055
  • Zhu Y, Chen B, Tang H, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy. Trans Nonferrous Met Soc China. 2018;28:36–46. doi:10.1016/S1003-6326(18)64636-9
  • Deng H, Chen L, Qiu W, et al. Microstructure and mechanical properties of as-deposited and heat treated Ti–5Al–5Mo–5V–3Cr–1Zr (Ti-55531) alloy fabricated by laser melting deposition. J Alloys Compd. 2019;810:151792. doi:10.1016/j.jallcom.2019.151792
  • Sun S-H, Hagihara K, Nakano T. Effect of scanning strategy on texture formation in Ni-25 at.% Mo alloys fabricated by selective laser melting. Mater Des. 2018;140:307–316. doi:10.1016/j.matdes.2017.11.060
  • Wan HY, Zhou ZJ, Li CP, et al. Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718. Mater Sci Eng A. 2019;753:42–48. doi:10.1016/j.msea.2019.03.007
  • Choi J-P, Shin G-H, Yang S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol. 2017;310:60–66. doi:10.1016/j.powtec.2017.01.030
  • Carter LN, Martin C, Withers PJ, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd. 2014;615:338–347. doi:10.1016/j.jallcom.2014.06.172
  • Alabort E, Tang YT, Barba D, et al. Alloys-by-design: a low-modulus titanium alloy for additively manufactured biomedical implants. Acta Mater. 2022;229:117749. doi:10.1016/j.actamat.2022.117749
  • Leicht A, Yu CH, Luzin V, et al. Effect of scan rotation on the microstructure development and mechanical properties of 316L parts produced by laser powder bed fusion. Mater Charact. 2020;163:110309. doi:10.1016/j.matchar.2020.110309
  • Montero-Sistiaga ML, Godino-Martinez M, Boschmans K, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting). Addit Manuf. 2018;23:402–410. doi:10.1016/j.addma.2018.08.028
  • Sun S-H, Ishimoto T, Hagihara K, et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting. Scr Mater. 2019;159:89–93. doi:10.1016/j.scriptamat.2018.09.017
  • Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility. Mater Sci Eng A. 2016;665:59–65. doi:10.1016/j.msea.2016.04.027
  • Sofinowski KA, Raman S, Wang X, et al. Layer-wise engineering of grain orientation (LEGO) in laser powder bed fusion of stainless steel 316L. Addit Manuf. 2021;38:101809. doi:10.1016/j.addma.2020.101809
  • Xue A, Lin X, Wang L, et al. Influence of trace boron addition on microstructure, tensile properties and their anisotropy of Ti6Al4V fabricated by laser directed energy deposition. Mater Des. 2019;181:107943. doi:10.1016/j.matdes.2019.107943
  • Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing. Nat Commun. 2018;9:3426. doi:10.1038/s41467-018-05819-9
  • AlMangour B, Grzesiak D, Yang J-M. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Compd. 2017;728:424–435. doi:10.1016/j.jallcom.2017.08.022
  • Zhang Q, Chen J, Zhao Z, et al. Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy. Mater Sci Eng A. 2016;673:204–212. doi:10.1016/j.msea.2016.07.040
  • Amirabdollahian S, Deirmina F, Harris L, et al. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition. Scr Mater. 2021;201:113973. doi:10.1016/j.scriptamat.2021.113973
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Mater. 2017;129:52–60. doi:10.1016/j.actamat.2017.02.069
  • Liu Z, Qin Z-X, Liu F, et al. The microstructure and mechanical behaviors of the Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy produced by laser melting deposition. Mater Charact. 2014;97:132–139. doi:10.1016/j.matchar.2014.09.002
  • Li S, Yang J, Wang Z. Multi-laser powder bed fusion of Ti-6.5Al-2Zr-Mo-V alloy powder: defect formation mechanism and microstructural evolution. Powder Technol. 2021;384:100–111. doi:10.1016/j.powtec.2021.02.010
  • Szost BA, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater Des. 2016;89:559–567. doi:10.1016/j.matdes.2015.09.115
  • Kelly SM, Kampe SL. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: part I. Microstructural characterization. Metall Mater Trans A. 2004;35:1861–1867. doi:10.1007/s11661-004-0094-8
  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320. doi:10.1016/j.actamat.2014.12.054
  • Nassar AR, Reutzel EW. Additive manufacturing of Ti-6Al-4V using a pulsed laser beam. Metall Mater Trans A. 2015;46:2781–2789. doi:10.1007/s11661-015-2838-z
  • Zhai Y, Lados DA, Brown EJ, et al. Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by laser engineered net shaping. Addit Manuf. 2019;27:334–344. doi:10.1016/j.addma.2019.02.017
  • Neikter M, Åkerfeldt P, Pederson R, et al. Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes. Mater Charact. 2018;143:68–75. doi:10.1016/j.matchar.2018.02.003
  • Chen J, Fabijanic D, Zhang T, et al. Deciphering the transformation pathway in laser powder-bed fusion additive manufacturing of Ti-6Al-4V alloy. Addit Manuf. 2022;58:103041. doi:10.1016/j.addma.2022.103041
  • Zhu Z, Liu T, Dong C, et al. Achieving high-temperature strength and plasticity in near-α Ti-7Al-3Zr-2V alloy using cluster formula design. J Mater Res Technol. 2022;18:2582–2592. doi:10.1016/j.jmrt.2022.03.158
  • Wang J, Luo Q, Wang H, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique. Addit Manuf. 2020;32:101007. doi:10.1016/j.addma.2019.101007
  • Wu Y, Zhang S, Cheng X, et al. Investigation on solid-state phase transformation in a Ti-47Al-2Cr-2V alloy due to thermal cycling during laser additive manufacturing process. J Alloys Compd. 2019;799:325–333. doi:10.1016/j.jallcom.2019.05.337
  • Ouyang D, Zhang P, Zhang C, et al. High-strength lamellar high-entropy alloys in-situ synthesized by laser additive manufacturing. Mater Sci Eng A. 2023;867:144745. doi:10.1016/j.msea.2023.144745
  • Yvinec T, Naït-Ali A, Mellier D, et al. Tensile properties of Ti-6Al-4V as-built by laser metal deposition: the relationship between heat affected zone bands, strain localization and anisotropy in ductility. Addit Manuf. 2022;55:102830. doi:10.1016/j.addma.2022.102830
  • Lee J-R, Lee M-S, Yeon SM, et al. Unravelling anisotropic deformation behaviour of Ti-6Al-4V ELI fabricated by powder bed fusion additive manufacturing. Mater Charact. 2023;202:113017. doi:10.1016/j.matchar.2023.113017
  • Foehring D, Chew HB, Lambros J. Characterizing the tensile behavior of additively manufactured Ti-6Al-4V using multiscale digital image correlation. Mater Sci Eng A. 2018;724:536–546. doi:10.1016/j.msea.2018.03.091
  • Ty A, Balcaen Y, Mokhtari M, et al. Influence of deposit and process parameters on microstructure and mechanical properties of Ti6Al4V obtained by DED-W (PAW). J Mater Res Technol. 2022;18:2853–2869. doi:10.1016/j.jmrt.2022.03.169
  • Hofmann DC, Kolodziejska J, Roberts S, et al. Compositionally graded metals: a new frontier of additive manufacturing. J Mater Res. 2014;29:1899–1910. doi:10.1557/jmr.2014.208
  • Li Y, Feng Z, Hao L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv Mater Technol. 2020;5:1900981. doi:10.1002/admt.201900981
  • Nazir A, Gokcekaya O, Md Masum Billah K, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Des. 2023;226:111661. doi:10.1016/j.matdes.2023.111661
  • Multi-material metal parts by Powder Bed Fusion [Internet]. Metal AM magazine. 2022 [cited 2023 Oct 21]. Available from: https://www.metal-am.com/articles/multi-material-metal-parts-by-powder-bed-fusion-new-application-opportunities/.
  • Meyer I, Oel M, Ehlers T, et al. Additive manufacturing of multi-material parts – design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Heliyon. 2023;9:e18301. doi:10.1016/j.heliyon.2023.e18301
  • Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Des. 2019;164:107552. doi:10.1016/j.matdes.2018.107552
  • Singh P, Pungotra H, Kalsi NS. On the characteristics of titanium alloys for the aircraft applications. Mater Today Proc. 2017;4:8971–8982. doi:10.1016/j.matpr.2017.07.249
  • Wang J, East D, Morozov EV, et al. Microstructure and hardness variation of additively manufactured Ti–Ni–C functionally graded composites. J Alloys Compd. 2021;865:158976. doi:10.1016/j.jallcom.2021.158976
  • Han J, Lu L, Xin Y, et al. Microstructure and mechanical properties of a novel functionally graded material from Ti6Al4V to Inconel 625 fabricated by dual wire + arc additive manufacturing. J Alloys Compd. 2022;903:163981. doi:10.1016/j.jallcom.2022.163981
  • Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–141. doi:10.1016/j.biomaterials.2016.01.012
  • Töppel T, Lausch H, Brand M, et al. Structural integration of sensors/actuators by laser beam melting for tailored smart components. JOM. 2018;70:321–327. doi:10.1007/s11837-017-2725-8
  • Hossain MS, Gonzalez JA, Hernandez RM, et al. Fabrication of smart parts using powder bed fusion additive manufacturing technology. Addit Manuf. 2016;10:58–66. doi:10.1016/j.addma.2016.01.001
  • Laser-based functionalization of electronic multi-material-layers for embedded sensors | Journal of Laser Applications | AIP Publishing [Internet]. [cited 2023 Oct 21]. Available from: https://pubs.aip.org/lia/jla/article-abstract/29/2/022603/96892/Laser-based-functionalization-of-electronic-multi.
  • Zou Y. Cold spray additive manufacturing: microstructure evolution and bonding features. Acc Mater Res. 2021;2:1071–1081. doi:10.1021/accountsmr.1c00138
  • Haché MJR, Tam J, Erb U, et al. Electrodeposited nanocrystalline medium-entropy alloys – an effective strategy of producing stronger and more stable nanomaterials. J Alloys Compd. 2022;899:163233. doi:10.1016/j.jallcom.2021.163233
  • Yu HZ, Jones ME, Brady GW, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater. 2018;153:122–130. doi:10.1016/j.scriptamat.2018.03.025