341
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Surface heterostructuring in laser-treated alloys through local austenitization for high strength and formability

, , , , , , & ORCID Icon show all
Pages 606-615 | Received 22 Feb 2024, Published online: 10 Jun 2024

References

  • Wang S, Zhang W, Yang J, et al. Achieving ultra-high-strength and good ductility of the ZK60 alloy sheet by high strain-rate rolling. Met Mater Int. 2023;29:1195–1201. doi:10.1007/s12540-022-01282-w
  • Huin T, Dancette S, Fabrègue D, et al. Investigation of the failure of advanced high strength steels heterogeneous spot welds. Metals (Basel). 2016;6:111. doi:10.3390/met6050111
  • Bouaziz O, Zurob H, Huang M. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int 2013;84:937–947. doi:10.1002/srin.201200288
  • Zhou B, Zhang Y, Cui X, et al. Mesoscale deformation incompatibility analysis of DP1180 steel. Met Mater Int. 2023;29:2878–2894. doi:10.1007/s12540-023-01431-9
  • Zhao Z, Shen Z, Dong P, et al. Temperature-Dependent yield strength of nanoprecipitate-strengthened face-centered cubic high entropy alloys: prediction and analysis. Met Mater Int 2023;29:1723–1738. doi:10.1007/s12540-022-01331-4
  • Hosseini Kahnooj SA, Vaseghi M, Sameezadeh M. Softening and microstructure evolution of pure copper disks processed by high pressure torsion. c. 2022;28:2646–2651. doi:10.1007/s12540-022-01173-0
  • Kim RE, Gu GH, Kwon H, et al. Role of synergistic hardening and damage evolution on the stretchability of Al1050/steel/Al1050 sheets. J Mater Res Technol. 2022;21:3514–3525. doi:10.1016/j.jmrt.2022.10.143
  • Lee HH, Yoon JI, Kim HS. Single-roll angular-rolling: a new continuous severe plastic deformation process for metal sheets. Scr Mater. 2018;146:204–207. doi:10.1016/j.scriptamat.2017.11.043
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater. 2020;5:706–723. doi:10.1038/s41578-020-0212-2
  • Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Lee JA, Park J, Choi YT, et al. Influence of tensile properties on hole expansion ratio investigated using a generative adversarial imputation network with explainable artificial intelligence. J Mater Sci. 2023;58:4780–4794. doi:10.1007/s10853-023-08315-8
  • Atzema EH. Automotive steels. In: R Rana, SB Singh, editor. 3-Formability of auto components. Woodhead Publishing; 2017. p. 47–93.
  • Kim RE, Kim ES, Karthik GM, et al. Heterostructured alloys with enhanced strength-ductility synergy through laser cladding. Scr Mater 2022;215:114732. doi:10.1016/j.scriptamat.2022.114732
  • Kim RE, Moon J, Kim ES, et al. Surface heterostructuring of laser clad 316L stainless steel through texture-driven deformation twinning. Scr Mater 2022;221:114989. doi:10.1016/j.scriptamat.2022.114989
  • Bae JW, Moon J, Jang MJ, et al. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy. Mater Sci Eng A. 2017;703:324–330. doi:10.1016/j.msea.2017.07.079
  • Panthi SK, Saxena S. Prediction of crack location in deep drawing processes using finite element simulation. Comput Mater Contin. 2012;32:15–27.
  • Kim DH, Seong Y, Kim JG, et al. Analysis of bending behavior of TiN particle-reinforced martensitic steel using micro-digital image correlation. Mater Sci Eng A. 2020;794:139965. doi:10.1016/j.msea.2020.139965
  • Fan JP, Tang CY, Tsui CP, et al. 3D finite element simulation of deep drawing with damage development. Int J Mach Tools Manuf. 2006;46:1035–1044. doi:10.1016/j.ijmachtools.2005.07.044
  • Sarkar J, Kutty TRG, Wilkinson DS, et al. Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Mater Sci Eng A. 2004;369:258–266. doi:10.1016/j.msea.2003.11.022
  • Kim RE, Gu GH, Choi YT, et al. Superior tensile properties and formability synergy of high-entropy alloys through inverse-gradient structures via laser surface treatment. Scr Mater 2023;234:115587. doi:10.1016/j.scriptamat.2023.115587
  • Merklein M, Böhm W, Lechner M. Tailoring material properties of aluminum by local laser treatment. Phys Procedia. 2012;39:232–239. doi:10.1016/j.phpro.2012.10.034
  • Liverani E, Ascari A, Fortunato A, et al. Laser assisted cold bending of high strength steels. Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference; 2014 June 9–13; Detroit, USA.
  • Luo C, Zhao Y, Cao Y, et al. Effect of laser heat treatment on bending property of laser welded joints of low-alloy ultra-high strength steel. J Laser Appl 2019;31:3.
  • Neugebauer R, Scheffler S, Poprawe R, et al. Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng Res Devel. 2009;3:347–351. doi:10.1007/s11740-009-0186-9
  • Li Z, Chen J, Wang X, et al. Microstructure distribution and bending fracture mechanism of 65Mn steel in the laser surface treatment. Mater Sci Eng A. 2022;850:143568. doi:10.1016/j.msea.2022.143568
  • Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing. Mater Sci Eng A. 2009;519:46–50. doi:10.1016/j.msea.2009.04.038
  • Jeong SG, Ahn SY, Kim ES, et al. Effect of substrate yield strength and grain size on the residual stress of direct energy deposition additive manufacturing measured by neutron diffraction. Mater Sci Eng A. 2022;851:143632. doi:10.1016/j.msea.2022.143632
  • Rangarajan R, Segall AE, Martukanitz RP, et al. Method for thermal history prediction during additive manufacturing using Far-field temperature measurements. J Mod Mech Eng Technol. 2019;6:21–30. doi:10.31875/2409-9848.2019.06.4
  • Heigel J, Michaleri P, Palmer TA. Measurement of forced surface convection in directed energy deposition additive manufacturing. J Eng Manuf. 2015;230:7.
  • Gouge MF, Heigel JC, Michaleris P, et al. Modeling forced convection in the thermal simulation of laser cladding processes. Int J Adv Manuf Technol. 2015;79:307–320. doi:10.1007/s00170-015-6831-x
  • Gu GH, Seo MH, Suh DW, et al. Observation of multi-scale damage evolution in transformation-induced plasticity steel under bending condition. Mater Today Commun. 2023;34:105291. doi:10.1016/j.mtcomm.2022.105291
  • Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater Des. 2015;87:380–385. doi:10.1016/j.matdes.2015.08.045
  • Youssef D, Hassab-Elnaby S, Al-Sayed SR. New 3D model for accurate prediction of thermal and microstructure evolution of laser powder cladding of Ti6Al4 V alloy. Alex Eng J. 2022;61:4137–4158. doi:10.1016/j.aej.2021.09.014
  • El-Tahawy M, Huang Y, Choi H, et al. High temperature thermal stability of nanocrystalline 316L stainless steel processed by high-pressure torsion. Mater Sci Eng A. 2017;682:323–331. doi:10.1016/j.msea.2016.11.066
  • Molnár D, Sun X, Lu S, et al. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng A. 2019;759:490–497. doi:10.1016/j.msea.2019.05.079
  • Järvenpää A, Jaskari M, Kisko A, et al. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10:281. doi:10.3390/met10020281
  • Pak J, Suh DW, Bhadeshia HKDH. Displacive phase transformation and surface effects associated with confocal laser scanning microscopy. Metall Mater Trans A. 2012;43:4520–4524. doi:10.1007/s11661-012-1264-8
  • Aletdinov A, Mironov S, Korznikova GF, et al. Martensite-to-Austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel, metall. Mater Trans A. 2019;50:1346–1357. doi:10.1007/s11661-018-5070-9
  • Jonas JJ. Microstructure and texture in steels: transformations texture associated with steel processing. London: Springer; 2009.
  • Escobar DP, Dafé SSF, Santos DB. Martensite reversion and texture formation in 17Mn-0.06C TRIP/TWIP steel after hot cold rolling and annealing. J Mater Res Technol. 2015;4:162–170. doi:10.1016/j.jmrt.2014.10.004
  • Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991;31:1431–1437. doi:10.2355/isijinternational.31.1431
  • Kim S, Jo MC, Kim S, et al. Interpretation of surficial shear crack propagation mechanisms in bending for Zn or AlSi coated hot press forming steels. Sci Rep. 2021;11:11428. doi:10.1038/s41598-021-91065-x
  • Ghassemali E, Sonkusare R, Biswas K, et al. In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J Alloys Compd. 2017;710:539–546. doi:10.1016/j.jallcom.2017.03.307
  • Sandin O, Jonsén P, Frómeta D, et al. Stating failure modelling limitations of high strength sheets: implications to sheet metal forming. Materials. 2021;14:7821. doi:10.3390/ma14247821
  • Ingelgem YV, Vandendael I, Van den Broek D, et al. Influence of laser surface hardening on the corrosion resistance of martensitic stainless steel. Electrochim Acta. 2007;52:7796–7801. doi:10.1016/j.electacta.2007.02.011
  • Asadi M, Frommeyer G, Aghajani A, et al. Local laser heat treatment in dual-phase steels. Metall Mater Trans A. 2012;43:1244–1258. doi:10.1007/s11661-011-0943-1
  • Breukelman HJ, Santofimia MJ, Hidalgo J. Hierarchically patterned multiphase steels created by localised laser treatments. Mater Des 2022;221:110984. doi:10.1016/j.matdes.2022.110984
  • Palmieri ME, Lorusso VD, Tricarico L. Laser-induced softening analysis of a hardened aluminum alloy by physical simulation. Inter J Adv Manuf Technol. 2020;111:1503–1515. doi:10.1007/s00170-020-06219-4
  • Merklein M, Böhm W, Lechner M. Tailoring material properties of aluminum by local laser heat treatment. Phys Procedia. 2012;39:232–239. doi:10.1016/j.phpro.2012.10.034
  • Rodríguez A, López AJ, Lamas J, et al. Robot-assisted laser ablation for 3D surfaces. application for paint removal with ultrashort pulse laser. Opt Lasers Eng. 2023;160:107284. doi:10.1016/j.optlaseng.2022.107284
  • Skvarenina S, Shin YC. Predictive modeling and experimental results for laser hardening of AISI 1536 steel with complex geometric features by a high power diode laser. Surf Coat Technol 2006;201:2256–2269. doi:10.1016/j.surfcoat.2006.03.039