1,236
Views
0
CrossRef citations to date
0
Altmetric
Brief Overview

Mitigating friction and wear by pre-designed or tribo-induced heterostructures: an overview

, , , &
Pages 535-550 | Received 02 Apr 2024, Published online: 02 Jun 2024

References

  • Blau PJ. Fifty years of research on the wear of metals. Tribol Int. 1997;30(5):321–331. doi:10.1016/S0301-679X(96)00062-X
  • Patnaik A, Singh T, Kukshal V. Tribology in materials and manufacturing: wear, friction and lubrication. London: IntechOpen; 2021.
  • Deuis R, Subramanian C, Yellup J. Dry sliding wear of aluminium composites—a review. Compos Sci Technol. 1997;57(4):415–435. doi:10.1016/S0266-3538(96)00167-4
  • Chowdhury M, Nuruzzaman D, Mia A, et al. Friction coefficient of different material pairs under different normal loads and sliding velocities. Tribol Ind. 2012;34(1):18.
  • Wang PF, Han Z, Lu K. Enhanced tribological performance of a gradient nanostructured interstitial-free steel. Wear. 2018;402:100–108. doi:10.1016/j.wear.2018.02.010
  • Sarkar AD. Wear of metals: international series in materials science and technology. Oxford: Elsevier; 2013.
  • Wang PF, Han Z. Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions. J Mater Sci Technol. 2018;34(10):1835–1842. doi:10.1016/j.jmst.2018.01.013
  • Zhu Y, Wu X. Heterostructured materials. Prog Mater Sci. 2022;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331. doi:10.1016/j.mattod.2017.02.003
  • Romero-Resendiz L, El-Tahawy M, Zhang T, et al. Heterostructured stainless steel: properties, current trends, and future perspectives. Mater Sci Eng R Rep. 2022;150:100691. doi:10.1016/j.mser.2022.100691
  • Li X, Lu L, Li J, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater. 2020;5(9):706–723. doi:10.1038/s41578-020-0212-2
  • Wu X, Zhu Y. Gradient and lamellar heterostructures for superior mechanical properties. MRS Bull. 2021;46:244–249. doi:10.1557/s43577-021-00056-w
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532. doi:10.1080/21663831.2017.1343208
  • Sache M. Damascus steel: myth, history, technology applications. Düsseldorf: Stahleisen; 1994.
  • Verhoeven JD, Pendray A, Dauksch W. The key role of impurities in ancient Damascus steel blades. Jom. 1998;50:58–64. doi:10.1007/s11837-998-0419-y
  • Lin Y, Pan J, Zhou HF, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018;153:279–289. doi:10.1016/j.actamat.2018.04.065
  • Chen X, Han Z, Li X, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv. 2016;2(12):e1601942. doi:10.1126/sciadv.1601942
  • Lu K. Gradient nanostructured materials. Acta Metall Sinica. 2015;51(1):1–10.
  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci U S A. 2014;111(20):7197–7201. doi:10.1073/pnas.1324069111
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331(6024):1587–1590. doi:10.1126/science.1200177
  • Lin Y, Duan F, Pan J, et al. On the adhesion performance of gradient-structured Ni-P metallic coatings. Mater Sci Eng A. 2022;844:143170. doi:10.1016/j.msea.2022.143170
  • Lin Y, Yu Q, Pan J, et al. On the impact toughness of gradient-structured metals. Acta Mater. 2020;193:125–137. doi:10.1016/j.actamat.2020.04.027
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362(6414):eaau1925. doi:10.1126/science.aau1925
  • Lu Y, Su S, Zhang S, et al. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility. Acta Mater. 2021;206:116632. doi:10.1016/j.actamat.2021.116632
  • Ma XL, Huang CX, Xu WZ, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr Mater. 2015;103:57–60. doi:10.1016/j.scriptamat.2015.03.006
  • Huang M, Xu C, Fan G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite. Acta Mater. 2018;153:235–249. doi:10.1016/j.actamat.2018.05.005
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;21(7):713–719. doi:10.1016/j.mattod.2018.03.006
  • Cuan X, Pan J, Cao R, et al. Effect of amorphous layer thickness on the tensile behavior of bulk-sized amorphous Ni-P/crystalline Ni laminates. Mater Lett. 2018;218:150–153. doi:10.1016/j.matlet.2018.01.164
  • Ruppert M, Schunk C, Hausmann D, et al. Global and local strain rate sensitivity of bimodal Al-laminates produced by accumulative roll bonding. Acta Mater. 2016;103:643–650. doi:10.1016/j.actamat.2015.11.009
  • Ma X, Huang C, Moering J, et al. Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 2016;116:43–52. doi:10.1016/j.actamat.2016.06.023
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature. 2020;582(7813):515–519. doi:10.1038/s41586-020-2409-3
  • Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36. doi:10.1038/nmat4089
  • Liddicoat PV, Liao X-Z, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun. 2010;1(1):63. doi:10.1038/ncomms1062
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17(1):63–71. doi:10.1038/nmat5021
  • Zeng Z, Li X, Xu D, et al. Gradient plasticity in gradient nano-grained metals. Extreme Mech Lett. 2016;8:213–219. doi:10.1016/j.eml.2015.12.005
  • Chen X, Schneider R, Gumbsch P, et al. Microstructure evolution and deformation mechanisms during high rate and cryogenic sliding of copper. Acta Mater. 2018;161:138–149. doi:10.1016/j.actamat.2018.09.016
  • Mohseni H, Nandwana P, Tsoi A, et al. In situ nitrided titanium alloys: microstructural evolution during solidification and wear. Acta Mater. 2015;83:61–74. doi:10.1016/j.actamat.2014.09.026
  • Chen X, Han Z, Lu K. Enhancing wear resistance of Cu-Al alloy by controlling subsurface dynamic recrystallization. Scr Mater. 2015;101:76–79. doi:10.1016/j.scriptamat.2015.01.023
  • Padilla HA, Boyce BL, Battaile CC, et al. Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity. Wear. 2013;297(1):860–871. doi:10.1016/j.wear.2012.10.018
  • Meng A, Liang F, Gu L, et al. An exceptionally wear-resistant CoFeNi2 medium entropy alloy via tribo-induced nanocrystallites with amorphous boundaries. Appl Surf Sci. 2023;614:156102. doi:10.1016/j.apsusc.2022.156102
  • Liu C, Li Z, Lu W, et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat Commun. 2021;12(1):5518. doi:10.1038/s41467-021-25778-y
  • Luo J, Sun W, Liang D, et al. Superior wear resistance in a TaMoNb compositionally complex alloy film via in-situ formation of the amorphous-crystalline nanocomposite layer and gradient nanostructure. Acta Mater. 2023;243:118503. doi:10.1016/j.actamat.2022.118503
  • Dollmann A, Rau JS, Bieber B, et al. Temporal sequence of deformation twinning in CoCrNi under tribological load. Scr Mater. 2023;229:115378. doi:10.1016/j.scriptamat.2023.115378
  • Yang W, Luo J, Fu H, et al. Yang, bcc → hcp phase transition significantly enhancing the wear resistance of metastable refractory high-entropy alloy. Scr Mater. 2022;221:114966. doi:10.1016/j.scriptamat.2022.114966
  • Mills SH, Dellacorte C, Noebe RD, et al. Rolling contact fatigue deformation mechanisms of nickel-rich nickel-titanium-hafnium alloys. Acta Mater. 2021;209:116784. doi:10.1016/j.actamat.2021.116784
  • AlMotasem AT, Daghbouj N, Sen HS, et al. Influence of HCP/BCC interface orientation on the tribological behavior of Zr/Nb multilayer during nanoscratch: A combined experimental and atomistic study. Acta Mater. 2023;249:118832. doi:10.1016/j.actamat.2023.118832
  • Tsybenko H, Prabhakar JM, Rohwerder M, et al. Chemical evolution of polycrystalline cementite (Fe3C) during single-pass sliding wear: an investigation by surface spectroscopy. Acta Mater. 2023;245:118614. doi:10.1016/j.actamat.2022.118614
  • Deng SQ, Godfrey A, Liu W, et al. A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scr Mater. 2016;117:41–45. doi:10.1016/j.scriptamat.2016.02.007
  • Cai W, Bellon P, Beaudoin AJ. Probing the subsurface lattice rotation dynamics in bronze after sliding wear. Scr Mater. 2019;172:6–11. doi:10.1016/j.scriptamat.2019.07.002
  • Zhang J, Alpas AT. Transition between mild and severe wear in aluminium alloys. Acta Mater. 1997;45(2):513–528. doi:10.1016/S1359-6454(96)00191-7
  • Yin C-H, Liang Y-L, Liang Y, et al. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests. Acta Mater. 2019;166:208–220. doi:10.1016/j.actamat.2018.12.049
  • Wu G, Chan KC, Zhu L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature. 2017;545(7652):80–83. doi:10.1038/nature21691
  • Zhao ST, Li ZZ, Zhu CY, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci Adv. 2021;7(5):eabb3108. doi:10.1126/sciadv.abb3108
  • Wang YB, Liao XZ, Zhao YH, et al. The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion. Mater Sci Eng A. 2010;527(18):4959–4966. doi:10.1016/j.msea.2010.04.036
  • Liu Z, Patzig C, Selle S, et al. Stages in the tribologically-induced oxidation of high-purity copper. Scr Mater. 2018;153:114–117. doi:10.1016/j.scriptamat.2018.05.008
  • Popa F, Chicinas I, Isnard O. Alsb intermetallic semiconductor compound formation by solid state reaction after partial amorphization induced by mechanical alloying. Intermetallics. 2018;93:371–376. doi:10.1016/j.intermet.2017.11.002
  • Ren F, Arshad SN, Bellon P, et al. Sliding wear-induced chemical nanolayering in Cu-Ag, and its implications for high wear resistance. Acta Mater. 2014;72:148–158. doi:10.1016/j.actamat.2014.03.060
  • Xia W, Patil PP, Liu C, et al. A novel microwall sliding test uncovering the origin of grain refined tribolayers. Acta Mater. 2023;246:118670. doi:10.1016/j.actamat.2023.118670
  • Yan X, Hu J, Zhang X, et al. Obtaining superior low-temperature wear resistance in Q&P-processed medium Mn steel with a low initial hardness. Tribol Int. 2022;175:107803. doi:10.1016/j.triboint.2022.107803
  • Hu Y, Zhou L, Ding HH, et al. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading. Tribol Int. 2021;154:106685. doi:10.1016/j.triboint.2020.106685
  • An XL, Liu ZD, Zhang LT, et al. A new strong pearlitic multi-principal element alloy to withstand wear at elevated temperatures. Acta Mater. 2022;227:117700. doi:10.1016/j.actamat.2022.117700
  • Dreano A, Fouvry S, Sao-Joao S, et al. The formation of a cobalt-based glaze layer at high temperature: A layered structure. Wear. 2019;440–441:203101.
  • Liang F, Meng A, Sun Y, et al. A novel wear-resistant Ni-based superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures. Tribol Int. 2023;183:108383. doi:10.1016/j.triboint.2023.108383
  • Pan S, Zhao C, Wei P, et al. Sliding wear of CoCrNi medium-entropy alloy at elevated temperatures: wear mechanism transition and subsurface microstructure evolution. Wear. 2019;440–441:203108.
  • Hua N, Qian Z, Lin B, et al. Formation of a protective oxide layer with enhanced wear and corrosion resistance by heating the TiZrHfNbFe0.5 refractory multi-principal element alloy at 1000 °C. Scr Mater. 2023;225:115165. doi:10.1016/j.scriptamat.2022.115165
  • Inman IA, Datta S, Du HL, et al. Microscopy of glazed layers formed during high temperature sliding wear at 750 °C. Wear. 2003;254(5–6):461–467. doi:10.1016/S0043-1648(03)00134-0
  • Stott FH, Lin DS, Wood GC. The structure and mechanism of formation of the glaze’ oxide layers produced on nickel-based alloys during wear at high temperatures. Corros Sci. 1973;13(6):449–469. doi:10.1016/0010-938X(73)90030-9
  • Feng K, Shao T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear. 2021;476:203747. doi:10.1016/j.wear.2021.203747
  • Joseph J, Haghdadi N, Annasamy M, et al. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scr Mater. 2020;186:230–235. doi:10.1016/j.scriptamat.2020.05.053
  • Lou M, Chang K, Xu K, et al. Achieving exceptional wear resistance in cemented carbides using B2 intermetallic binders. Compos Part B Eng. 2023;249:110400. doi:10.1016/j.compositesb.2022.110400
  • Mujica Roncery L, Agudo Jácome L, Aghajani A, et al. Subsurface characterization of high-strength high-interstitial austenitic steels after impact wear. Wear. 2018;402–403:137–147. doi:10.1016/j.wear.2018.02.016
  • Ming H, Liu X, Yan H, et al. Understanding the microstructure evolution of Ni-based superalloy within two different fretting wear regimes in high temperature high pressure water. Scr Mater. 2019;170:111–115. doi:10.1016/j.scriptamat.2019.05.037
  • Liang F, Xu X, Wang P, et al. Microstructural origin of high scratch resistance in a gradient nanograined 316L stainless steel. Scr Mater. 2022;220:114895. doi:10.1016/j.scriptamat.2022.114895
  • Xu D, Edwards TEJ, Liao Z, et al. Revealing nanoscale deformation mechanisms caused by shear-based material removal on individual grains of a Ni-based superalloy. Acta Mater. 2021;212:116929. doi:10.1016/j.actamat.2021.116929
  • Chen X, Han Z, Lu K. Friction and wear reduction in copper with a gradient nano-grained surface layer. ACS Appl Mater Interfaces. 2018;10(16):13829–13838. doi:10.1021/acsami.8b01205
  • Zhang Y, Han Z, Wang K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear. 2006;260(9–10):942–948. doi:10.1016/j.wear.2005.06.010
  • Chen X, Han Z. A low-to-high friction transition in gradient nano-grained Cu and Cu-Ag alloys. Friction. 2021;9(6):1558–1567. doi:10.1007/s40544-020-0440-x
  • Wu B, Fu H, Sun W, et al. Significantly lowered coefficient of friction in copper alloy with a gradient nanograined-nanotwinned surface layer. Wear. 2022;510–511:204517. doi:10.1016/j.wear.2022.204517
  • Zhao X, Zhao B, Liu Y, et al. Research on friction and wear behavior of gradient nano-structured 40Cr steel induced by high frequency impacting and rolling. Eng Fail Anal. 2018;83:167–177. doi:10.1016/j.engfailanal.2017.09.012
  • Wang P, Han Z. Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions. J Mater Sci Technol. 2018;34(10):1835–1842. doi:10.1016/j.jmst.2018.01.013
  • Bernoulli D, Cao SC, Lu J, et al. Enhanced repeated frictional sliding properties in 304 stainless steel with a gradient nanostructured surface. Surf Coat Technol. 2018;339:14–19. doi:10.1016/j.surfcoat.2018.01.081
  • Li J, Chen T, Chen T, et al. Enhanced frictional performance in gradient nanostructures by strain delocalization. Int J Mech Sci. 2021;201:106458. doi:10.1016/j.ijmecsci.2021.106458
  • Zhou L, Liu G, Han Z, et al. Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scr Mater. 2008;58(6):445–448. doi:10.1016/j.scriptamat.2007.10.034
  • Sun HQ, Shi YN, Zhang MX. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf Coat Technol. 2008;202(13):2859–2864. doi:10.1016/j.surfcoat.2007.10.025
  • Rupert TJ, Schuh CA. Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 2010;58(12):4137–4148. doi:10.1016/j.actamat.2010.04.005
  • Hu T, Wen CS, Sun GY, et al. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surf Coat Technol. 2010;205(2):506–510. doi:10.1016/j.surfcoat.2010.07.023
  • Wang B, Yao B, Han Z. Annealing effect on wear resistance of nanostructured 316L stainless steel subjected to dynamic plastic deformation. J Mater Sci Technol. 2012;28(10):871–877. doi:10.1016/S1005-0302(12)60145-5
  • Chen X, Han Z, Li XY, et al. Friction of stable gradient nano-grained metals. Scr Mater. 2020;185:82–87. doi:10.1016/j.scriptamat.2020.04.041
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112(47):14501–14505. doi:10.1073/pnas.1517193112
  • Zhang Q, Li Y, Liang F, et al. Friction anisotropy and associated surface deformation mechanisms in heterogeneous copper/bronze laminates. Mater Charact. 2024;208:113644. doi:10.1016/j.matchar.2024.113644
  • Lin G, Peng Y, Li Y, et al. Remarkable anisotropic wear resistance with 100-fold discrepancy in a copper matrix laminated composite with only 0.2 vol% graphene. Acta Mater. 2021;215:117092. doi:10.1016/j.actamat.2021.117092
  • Cihan E, Störmer H, Leiste H, et al. Low friction of metallic multilayers by formation of a shear-induced alloy. Sci Rep. 2019;9(1):9480. doi:10.1038/s41598-019-45734-7
  • Ma X, Gwalani B, Tao J, et al. Shear strain gradient in Cu/Nb nanolaminates: strain accommodation and chemical mixing. Acta Mater. 2022;234:117986. doi:10.1016/j.actamat.2022.117986
  • Li J, Chen T, Chen T, et al. Computational modelling of frictional deformation of bimodal nanograined metals. Int J Mech Sci. 2022;222:107220. doi:10.1016/j.ijmecsci.2022.107220
  • Koren E, Lörtscher E, Rawlings C, et al. Adhesion and friction in mesoscopic graphite contacts. Science. 2015;348(6235):679–683. doi:10.1126/science.aaa4157
  • Li P, Ju P, Ji L, et al. Toward robust macroscale superlubricity on engineering steel substrate. Adv Mater. 2020;32(36):2002039. doi:10.1002/adma.202002039
  • Ren P, Wen M, Zhang K, et al. Self-assembly of TaC@Ta core-shell-like nanocomposite film via solid-state dewetting: toward superior wear and corrosion resistance. Acta Mater. 2018;160:72–84. doi:10.1016/j.actamat.2018.08.055
  • Yu Y, Kou H, Wang Y, et al. Formation of core-shell-like structure in β-solidified TiAl alloy and its effect on hot workability. Acta Mater. 2023;255:119036. doi:10.1016/j.actamat.2023.119036
  • Krug ME, Mao Z, Seidman DN, et al. Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al-Li-Sc alloys. Acta Mater. 2014;79:382–395. doi:10.1016/j.actamat.2014.06.038
  • Aouadi SM, Bohnhoff A, Sodergren M, et al. Tribological investigation of zirconium nitride/silver nanocomposite structures. Surf Coat Technol. 2006;201(1):418–422. doi:10.1016/j.surfcoat.2005.11.135
  • Luo J, Sun W, Duan R, et al. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance. J Mater Sci Technol. 2022;110:43–56. doi:10.1016/j.jmst.2021.09.029
  • Wang L, Gao Y, Xue Q, et al. Graded composition and structure in nanocrystalline Ni-Co alloys for decreasing internal stress and improving tribological properties. J Phys D Appl Phys. 2005;38(8):1318. doi:10.1088/0022-3727/38/8/033
  • Prakash NA, Gnanamoorthy R, Kamaraj M. Friction and wear behavior of surface nanocrystallized aluminium alloy under dry sliding condition. Mater Sci Eng B. 2010;168(1–3):176–181. doi:10.1016/j.mseb.2009.11.011
  • Lu G, Shi X, Liu X, et al. Effects of functionally gradient structure of Ni3Al metal matrix self-lubrication composites on friction-induced vibration and noise and wear behaviors. Tribol Int. 2019;135:75–88. doi:10.1016/j.triboint.2019.02.037
  • Zhou Q, Luo D, Ye W, et al. Mechanical and tribological behaviors of metallic glass/graphene film with a laminated structure. Compos Part A Appl Sci Manuf. 2022;155:106851. doi:10.1016/j.compositesa.2022.106851
  • Cai F, Zhang J, Wang J, et al. Improved adhesion and erosion wear performance of CrSiN/Cr multi-layer coatings on Ti alloy by inserting ductile Cr layers. Tribol Int. 2021;153:106657. doi:10.1016/j.triboint.2020.106657
  • Ye Y, Yao Y, Chen H, et al. Structure, mechanical and tribological properties in seawater of multilayer TiSiN/Ni coatings prepared by cathodic arc method. Appl Surf Sci. 2019;493:1177–1186. doi:10.1016/j.apsusc.2019.07.140
  • Dang C, Li J, Wang Y, et al. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4 V prepared by arc ion plating. Appl Surf Sci. 2016;386:224–233. doi:10.1016/j.apsusc.2016.06.024
  • Ma H, Miao Q, Zhang G, et al. The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating. Ceram Int. 2021;47(9):12583–12591. doi:10.1016/j.ceramint.2021.01.117
  • Liu J, Deng X, Huang L, et al. Friction and wear behavior of nano/ultrafine-grained and heterogeneous ultrafine-grained 18Cr-8Ni austenitic stainless steels. Tribol Int. 2020;152:106520. doi:10.1016/j.triboint.2020.106520
  • Qin W, Kang J, Li J, et al. Tribological behavior of the 316L stainless steel with heterogeneous lamella structure. Materials. 2018;11(10):1839. doi:10.3390/ma11101839
  • Liu Y, Zhang F, Huang Z, et al. Mechanical and dry sliding tribological properties of CoCrNiNbx medium-entropy alloys at room temperature. Tribol Int. 2021;163:107160. doi:10.1016/j.triboint.2021.107160
  • Zhang B, Yu Y, Zhu S, et al. Microstructure and wear properties of TiN-Al2O3-Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating. Mater Chem Phys. 2022;276:125352. doi:10.1016/j.matchemphys.2021.125352
  • Lin G, Peng Y, Dong Z, et al. Tribology behavior of high-content graphene/nanograined Cu bulk composites from core/shell nanoparticles. Composites Communications. 2021;25:100777. doi:10.1016/j.coco.2021.100777
  • Ma G, Wang L, Gao H, et al. The friction coefficient evolution of a TiN coated contact during sliding wear. Appl Surf Sci. 2015;345:109–115. doi:10.1016/j.apsusc.2015.03.156
  • Richter NA, Yang B, Barnard JP, et al. Significant texture and wear resistance improvement of TiN coatings using pulsed DC magnetron sputtering. Appl Surf Sci. 2023;635:157709. doi:10.1016/j.apsusc.2023.157709
  • Li X, Lu K. Improving sustainability with simpler alloys. Science. 2019;364(6442):733–734. doi:10.1126/science.aaw9905
  • Zhang Q, Li Y, Liang F, et al. Tailoring tribological characteristics in titanium alloys by laser surface texturing and 2D Ti3C2Tx MXene nanocoating. Adv Funct Mater. 2024:2401231. doi:10.1002/adfm.202401231