306
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Breaking hardness and electrical conductivity trade-off in Cu-Ti alloys through machine learning and Pareto front

, , , , , , , & show all
Pages 580-589 | Received 26 Feb 2024, Published online: 15 Jun 2024

References

  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5669):422–426. doi:10.1126/science.1092905
  • Gorsse S, Ouvrard B, Gouné M, et al. Microstructural design of new high conductivity – high strength Cu-based alloy. J Alloys Compd. 2015;633:42–47. doi:10.1016/j.jallcom.2015.01.234
  • Semboshi S, Kaneno Y, Takasugi T, et al. Effect of composition on the strength and electrical conductivity of Cu-Ti binary alloy wires fabricated by aging and intense drawing. Metall Mater Trans A. 2019;50(3):1389–1396. doi:10.1007/s11661-018-5088-z
  • Meng X, Cui Z, Huang L, et al. Effects of loads and speeds on friction and wear properties of Cu–Ti alloys processed by combination aging treatments. J Mater Res Technol. 2023;26:948–960. doi:10.1016/j.jmrt.2023.07.239
  • Soffa WA, Laughlin DE. High-strength age hardening copper–titanium alloys: redivivus. Prog Mater Sci. 2004;49(3):347–366. doi:10.1016/S0079-6425(03)00029-X
  • Eze AA, Jamiru T, Sadiku ER, et al. Effect of titanium addition on the microstructure, electrical conductivity and mechanical properties of copper by using SPS for the preparation of Cu-Ti alloys. J Alloys Compd. 2018;736:163–171. doi:10.1016/j.jallcom.2017.11.129
  • Nagarjuna S, Balasubramanian K, Sarma DS. Effect of Ti additions on the electrical resistivity of copper. Mater Sci Eng, A. 1997;225(1):118–124. doi:10.1016/S0921-5093(96)10578-5
  • Nagarjuna S, Balasubramanian K, Sarma DS. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys. J Mater Sci. 1999;34(12):2929–2942. doi:10.1023/A:1004603906359
  • Yang S, Liu G, Zhong Y. Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: A case study with Al-Co-Cr-Fe-Ni system. J Alloys Compd. 2022;916:165477. doi:10.1016/j.jallcom.2022.165477
  • Huo W, Wang S, Dominguez-Gutierrez FJ, et al. High-entropy materials for electrocatalytic applications: a review of first principles modeling and simulations. Mater Res Lett. 2023;11(9):713–732. doi:10.1080/21663831.2023.2224397
  • Lu Z, Zhang L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Mater Des. 2017;116:427–437. doi:10.1016/j.matdes.2016.12.034
  • Gao J, Malchère A, Yang S, et al. Dewetting of Ni silicide thin film on Si substrate: In-situ experimental study and phase-field modeling. Acta Mater. 2022;223:117491. doi:10.1016/j.actamat.2021.117491
  • Tianchuang G, Jianbao G, Jinliang Z, et al. Development of an accurate “composition-process-properties” dataset for SLMed Al-Si-(Mg) alloys and its application in alloy design. J Mater Inf. 2023;3(1):6–20. doi:10.20517/jmi.2023.03.
  • Ding Z, Zhou J, Yang P, et al. Accelerated exploration of high-performance multi-principal element alloys: data-driven high-throughput calculations and active learning method. Mater Res Lett. 2023;11(8):670–677. doi:10.1080/21663831.2023.2215826
  • Sprueill HW, Bilbrey JA, Pang Q, et al. Active sampling for neural network potentials: Accelerated simulations of shear-induced deformation in Cu–Ni multilayers. J Chem Phys. 2023;158(11):114103. doi:10.1063/5.0133023
  • Jin H, Wang H, Wang X, et al. Alloying element distributions of precipitates in Cu–Cr alloys aided by machine learning. Mater Today Commun. 2023;36:106612. doi:10.1016/j.mtcomm.2023.106612
  • Torabi A, Babaheydari RM, Akbari GH, et al. Optimizing of micro-hardness of nanostructured Cu–Cr solid solution produced by mechanical alloying using ANN and genetic algorithm. SN Appl Sci. 2020;2(11):1919. doi:10.1007/s42452-020-03722-x
  • Fang SF. Prediction of the hardness of Cu-Ti-Co alloy using machine learning techniques. Key Eng Mater. 2018;777:372–376. doi:10.4028/www.scientific.net/KEM.777.372
  • Zhao Q, Yang H, Liu J, et al. Machine learning-assisted discovery of strong and conductive Cu alloys: Data mining from discarded experiments and physical features. Mater Des. 2021;197:109248. doi:10.1016/j.matdes.2020.109248
  • Nagarjuna S, Balasubramanian K, Sarma DS. Effect of prior cold work on mechanical properties and structure of an age-hardened Cu–1.5 wt% Ti alloy. J Mater Sci. 1997;32(13):3375–3385. doi:10.1023/A:1018608430443
  • Nagarjuna S, Balasubramanian K, Sarma D. Effects of cold work on precipitation hardening of Cu-4.5 mass%Ti Alloy. Mater Trans, JIM. 1995;36:1058–1066. doi:10.2320/matertrans1989.36.1058.
  • Semboshi S, Shin-ichi O, Suda H, et al. Aging of copper-titanium dilute alloys in hydrogen atmosphere: influence of prior-deformation on strength and electrical conductivity. Mater Trans. 2011;52:2137–2142. doi:10.2320/matertrans.M2011173
  • Semboshi S, Numakura H, Gao WL, et al. Effect of prior cold-working on strength and electrical conductivity of Cu-Ti dilute alloy aged in a hydrogen atmosphere. Mater Sci Forum. 2010;654–656:1315–1318. www.scientific.net/MSF.654-656.1315.
  • Semboshi S, Nishida T, Numakura H. Microstructure and mechanical properties of Cu–3at.% Ti alloy aged in a hydrogen atmosphere. Mater Sci Eng, A. 2009;517(1):105–113. doi:10.1016/j.msea.2009.03.047
  • Pedregosa F, Varoquaux GL, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2012;12:2825–2830.
  • He K, Tang R, Jin M. Pareto fronts of machining parameters for trade-off among energy consumption, cutting force and processing time. Int J Prod Econ. 2017;185:113–127. doi:10.1016/j.ijpe.2016.12.012
  • Witman MD, Ling S, Wadge M, et al. Towards Pareto optimal high entropy hydrides via data-driven materials discovery. J Mater Chem A. 2023;11(29):15878–15888. doi:10.1039/D3TA02323K
  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Luxburg UV, Guyon I, Bengio S, et al, editors. Proceedings of the 31st International conference on neural information processing systems. Long Beach (CA): Curran Associates Inc.; 2017. p. 4768–4777.
  • Yang H, Zeng B, Wang H, et al. Phase equilibria and thermodynamic re-assessment of the Cu–Ti system. Calphad. 2023;82:102594. doi:10.1016/j.calphad.2023.102594
  • Wang J, Leinenbach C, Liu LB, et al. Assessment of the atomic mobilities in fcc Cu-Fe and Cu-Ti Alloys. J Phase Equilib Diffus. 2011;32(1):30–38. doi:10.1007/s11669-010-9819-0
  • Cao W, Chen SL, Zhang F, et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad. 2009;33(2):328–342. doi:10.1016/j.calphad.2008.08.004
  • Yang S, Zhong J, Wang J, et al. OpenIEC: an open-source code for interfacial energy calculation in alloys. J Mater Sci. 2019;54(14):10297–10311. doi:10.1007/s10853-019-03639-w
  • Ecob RC, Bee JV, Ralph B. The cellular reaction in dilute copper-titanium alloys. Metall Trans A. 1980;11(8):1407–1414. doi:10.1007/BF02653496
  • Rouxel B, Cayron C, Bornand J, et al. Micro-addition of Fe in highly alloyed Cu-Ti alloys to improve both formability and strength. Mater Des. 2022;213:110340. doi:10.1016/j.matdes.2021.110340
  • Semboshi S, Al-Kassab T, Gemma R, et al. Microstructural evolution of Cu-1at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity. Ultramicroscopy. 2009;109(5):593–598. doi:10.1016/j.ultramic.2008.10.015
  • Semboshi S, Takasugi T. Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen atmosphere. J Alloys Compd. 2013;580:S397–S400. doi:10.1016/j.jallcom.2013.03.216
  • Tu Y, Liu X, Wang W, et al. Grain boundary evolution and effect on electrical conductivity of CuTi alloys prepared by accumulative roll bonding-diffusion alloying process. Mater Charact. 2023;201:112958. doi:10.1016/j.matchar.2023.112958
  • Zhang Y, Li YS, Tao NR, et al. High strength and high electrical conductivity in bulk nanograined Cu embedded with nanoscale twins. Appl Phys Lett. 2007;91(21):211901. doi:10.1063/1.2816126
  • Lundberg SM, Erion GG, Lee SI. Consistent individualized feature attribution for tree ensembles. In: Kim B, Malioutov DM, Varshney KR, et al, editors. 2017 ICML workshop on human interpretability in machine learning. Sydney: Australia; 2018. p. 31–38.