765
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Achieving superior strength and conductivity for Al-Zr-Sc wires by coupling design of deformation and ageing

, , , , , & show all
Pages 590-598 | Received 07 Feb 2024, Published online: 02 Jun 2024

References

  • Souza PHL, Oliveira CASd, Quaresma JMdV. Precipitation hardening in dilute Al–Zr alloys. J Mater Res Technol. 2018;7:66–72. doi:10.1016/j.jmrt.2017.05.006
  • Wang WY, Pan QL, Lin G, et al. Internal friction and heat resistance of Al, Al-Ce, Al-Ce-Zr and Al-Ce-(Sc)-(Y) aluminum alloys with high strength and high electrical conductivity. J Mater Res Technol. 2021;14:1255–1274. doi:10.1016/j.jmrt.2021.07.054
  • Ekaputra CN, Rakhmonov JU, Weiss D, et al. Microstructure and mechanical properties of cast Al-Ce-Sc-Zr-(Er) alloys strengthened by Al11Ce3 micro-platelets and L12 Al3(Sc,Zr,Er) nano-precipitates. Acta Mater. 2022;240:118354. doi:10.1016/j.actamat.2022.118354
  • Zhang J, Wang B, Wang H, et al. Improvement in compressive creep resistance of Al-0.2Zr alloy with L12 structured Sc-enriched precipitates. Mater Charact 2020;159:110024. doi:10.1016/j.matchar.2019.110024
  • Guan RG, Jin HM, Jiang W, et al. Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al-Sc-Zr alloys. Trans Nonferrous Metals Soc China. 2019;29(5):907–918. doi:10.1016/S1003-6326(19)65000-4
  • Zhou WW, Cai B, Li WJ, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor. Mat Sci Eng A-Struct. 2012;552:353–358. doi:10.1016/j.msea.2012.05.051
  • Kong Y, Pu Q, Jia Z, et al. Microstructure and property evolution of Al-0.4Fe-0.15Zr-0.25Er alloy processed by high pressure torsion. J Alloy Compd. 2020;824:153949. doi:10.1016/j.jallcom.2020.153949
  • Zhang JY, Wang HX, Yi DQ, et al. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables. Mater Charact 2018;145:126–134. doi:10.1016/j.matchar.2018.08.037
  • Liu L, Jiang JT, Zhang B, et al. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing. J Mater Sci Technol 2019;35:962–971. doi:10.1016/j.jmst.2018.12.023
  • Guan R, Shen Y, Zhao Z, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J Mater Sci Technol 2017;33:215–223. doi:10.1016/j.jmst.2017.01.017
  • Liu L, Jiang JT, Cui XY, et al. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions. J Mater Sci Technol 2022;99:61–72. doi:10.1016/j.jmst.2021.05.031
  • Booth-Morrison C, Seidman DN, Dunand DC. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys. Acta Mater. 2012;60:3643–3654. doi:10.1016/j.actamat.2012.02.030
  • Luca AD, Dunand DC, Seidman DN. Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content. Acta Mater. 2018;144:80–91. doi:10.1016/j.actamat.2017.10.040
  • Orlova TS, Latynina TA, Mavlyutov AM, et al. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al-0.4Zr alloy. J Alloy Compd. 2019;784:41–48. doi:10.1016/j.jallcom.2018.12.324
  • Orlova TS. Influence of severe plastic deformation on microstructure, strength and electrical conductivity of aged Al-0.4Zr (wt.%) alloy. Rev Adv Mater Sci 2018;55:92–101. doi:10.1515/rams-2018-0032
  • Pozdniakov AV, Barkov RY, Prosviryakov AS, et al. Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al-Er-Y alloy. J Alloy Compd. 2018;765:1–6. doi:10.1016/j.jallcom.2018.06.163
  • Kong Y, Jia Z, Liu Z, et al. Effect of Zr and Er on the microstructure, mechanical and electrical properties of Al-0.4Fe alloy. J Alloy Compd. 2021;857:157611. doi:10.1016/j.jallcom.2020.157611
  • Zhang Y, Gu J, Tian Y, et al. Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys. Mat Sci Eng. A-Struct. 2014;616:132–140. doi:10.1016/j.msea.2014.08.017
  • Barkov RY, Mikhaylovskaya AV, Yakovtseva OA, et al. Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er-Yb-Sc alloys with good electrical conductivity. J Alloy Compd. 2021;855:157367. doi:10.1016/j.jallcom.2020.157367
  • Gorlov LE, Loginova IS, Glavatskikh MV, et al. Novel precipitation strengthened Al-Y-Sc-Er alloy with high mechanical properties, ductility and electrical conductivity produced by different thermomechanical treatments. J Alloy Compd. 2022;918:165748. doi:10.1016/j.jallcom.2022.165748
  • Fan SY, Li ZH, Xiao WL, et al. Effects of processing paths on the microstructure, mechanical properties and electrical conductivity of dilute Al-Zr-Sc alloy conductive wires. J Mater Sci Technol 2024;188:202–215. doi:10.1016/j.jmst.2023.11.060
  • Pozdniakov AV, Barkov RY. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity. J Mater Sci Technol 2020;36:1–6. doi:10.1016/j.jmst.2019.08.006
  • Starink MJ, Wang SC. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta. Mater. 2003;51:5131–5150. doi:10.1016/S1359-6454(03)00363-X
  • Knipling KE, Seidman DN, Dunand DC. Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys. Acta Mater 2011;59:943–954. doi:10.1016/j.actamat.2010.10.017
  • Fan SY, Guo XM, Jiang QW, et al. Microstructure evolution and mechanical properties of Ti and Zr micro-alloyed Al-Cu alloy fabricated by wire + arc additive manufacturing. JOM-US. 2023;75:4115–4127. doi:10.1007/s11837-023-05900-9
  • Mohammadi A, Enikeev NA, Murashkin MY, et al. Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Mater. 2021;203:116503. doi:10.1016/j.actamat.2020.116503
  • Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51:4803–4814. doi:10.1016/S1359-6454(03)00320-3
  • Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998;46:1827–1836. doi:10.1016/S1359-6454(97)00365-0
  • Myhr OR, Grong O, Andersen SJ. Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater. 2001;49:65–75. doi:10.1016/S1359-6454(00)00301-3
  • Sauvage X, Bobruk EV, Murashkin MY, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al-Mg-Si alloys. Acta Mater. 2015;98:355–366. doi:10.1016/j.actamat.2015.07.039
  • Karolik AS, Luhvich AA. Calculation of electrical resistivity produced by dislocations and grain boundaries in metals. J Phys Condens Matter 1994;6:873–886. doi:10.1088/0953-8984/6/4/007