407
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Constructing multi-scale retained austenite makes bainitic steel better mechanical properties by introducing weak chemical heterogeneity

, , , , , & show all
Pages 653-660 | Received 24 Apr 2024, Published online: 20 Jun 2024

References

  • Liu G, Dai ZB, Yang ZG, et al. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: role of heating rate. J Mater Sci Technol. 2020;49:70–80. doi:10.1016/j.jmst.2020.01.051
  • Ding R, Zhang C, Wang Y, et al. Mechanistic role of Mn heterogeneity in austenite decomposition and stabilization in a commercial quenching and partitioning steel. Acta Mater. 2023;250:118869. doi:10.1016/j.actamat.2023.118869
  • Hu B, Zheng Q, Lu Y, et al. Stabilizing austenite via intercritical Mn partitioning in a medium Mn steel. Scr Mater. 2023;225:115162. doi:10.1016/j.scriptamat.2022.115162
  • Wang Y, Ding R, Franke C, et al. Flash annealing of a chemically heterogeneous medium Mn steel. Scr Mater. 2024;242:115923. doi:10.1016/j.scriptamat.2023.115923
  • Ding R, Yao YJ, Sun BH, et al. Chemical boundary engineering: a new route toward lean, ultrastrong yet ductile steels. Sci Adv. 2020;6(13):eaay1430. doi:10.1126/sciadv.aay1430
  • Zhang C, Xiong Z, Li Z, et al. On the role of chemical heterogeneity in carbon diffusion during quenching and partitioning. Acta Mater. 2024;271:119902. doi:10.1016/j.actamat.2024.119902
  • Kim JH, Gu G, Kwon M, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite. Acta Mater. 2022;223:117506. doi:10.1016/j.actamat.2021.117506
  • Gu G, Kim JH, Lee HH, et al. Room temperature quenching and partitioning (RT-Q&P) processed steel with chemically heterogeneous initial microstructure. Mater Sci Eng A. 2022;851:143651. doi:10.1016/j.msea.2022.143651
  • Zhang C, Liu C, Guo H, et al. Chemical heterogeneity enables austenite stabilization in a Si-/Al-free Fe-0.2C-2Mn steel. Scr Mater. 2022;218:114822. doi:10.1016/j.scriptamat.2022.114822
  • Lee S, Lee S, De Cooman BC. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scr Mater. 2011;65(3):225–228. doi:10.1016/j.scriptamat.2011.04.010
  • Li X, Lu K. Improving sustainability with simpler alloys. Science. 2019;364(6442):733–734. doi:10.1126/science.aaw9905
  • Ranjan R, Singh SB. Isothermal bainite transformation in low-alloy steels: mechanism of transformation. Acta Mater. 2021;202:302–316. doi:10.1016/j.actamat.2020.10.048
  • Zhao JL, Lv B, Zhang FC, et al. Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel. Mater Sci Eng A. 2019;742:179–189. doi:10.1016/j.msea.2018.11.004
  • Kim JH, Kwon M, Gu G, et al. Quenching and partitioning (Q&P) processed medium Mn steel starting from heterogeneous microstructure. Materialia. 2020;12:100757. doi:10.1016/j.mtla.2020.100757
  • Kim JH, Gu G, Koo M, et al. Enhanced ductility of as-quenched martensite by highly stable nano-sized austenite. Scr Mater. 2021;201:113955. doi:10.1016/j.scriptamat.2021.113955
  • Chai Z, Wang L, Wang Z, et al. Cr-enriched carbide induced stabilization of austenite to improve the ductility of a 1.7 GPa−press-hardened steel. Scr Mater. 2023;224:115108. doi:10.1016/j.scriptamat.2022.115108
  • Fang F, Dai SF, Zhang YX, et al. Role of inhibitor behavior in abnormal growth of Goss grain in grain-oriented silicon steel: experiments and modeling. J Mater Res Technol. 2023;24:2918–2934. doi:10.1016/j.jmrt.2023.03.179
  • Erişir E, Bilir OG, Gezmişoğlu AE. A study of carbide dissolution in bearing steels using computational thermodynamics and kinetics. IOP Conf Ser: Mater Sci Eng. 2017;179(1):012021. doi:10.1088/1757-899X/179/1/012021
  • Bhadeshia HKDH. Cementite. Int Mater Rev. 2020;65(1):1–27. doi:10.1080/09506608.2018.1560984
  • Zhang C, Xiong ZP, Yang DZ, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: retained austenite modification and formability improvement. Acta Mater. 2022;235:118060. doi:10.1016/j.actamat.2022.118060
  • Sun WW, Wu YX, Yang SC, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite. Scr Mater. 2018;146:60–63. doi:10.1016/j.scriptamat.2017.11.007
  • Morawiec M, Opara J, Garcia-Mateo C, et al. Effect of Mn on the chemical driving force and bainite transformation kinetics in medium-manganese alloys. J Therm Anal Calorim. 2023;148(4):1567–1576. doi:10.1007/s10973-022-11664-2
  • Leach L, Kolmskog P, Höglund L, et al. Critical driving forces for formation of bainite. Metall Mater Trans A. 2018;49(10):4509–4520. doi:10.1007/s11661-018-4819-5
  • Gao GH, Liu ZY, Feng C, et al. Acceleration of bainitic transformation through chemical patterning of austenite. Metall Mater Trans A. 2023;54(8):2975–2981. doi:10.1007/s11661-023-07084-y
  • Kim JH, Gu G, Hong S, et al. Acceleration of bainitic transformation in 0.28C-3.8Mn-1.5Si steel utilizing chemical heterogeneity. Scr Mater. 2024;239:115779. doi:10.1016/j.scriptamat.2023.115779
  • Królicka A, Żak AM, Caballero FG. Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Mater Des. 2021;211:110143–110143. doi:10.1016/j.matdes.2021.110143
  • Li K, Qian L, Wei C, et al. Effects of above- or below-a austenitization on bainite transformation behavior, microstructure and mechanical properties of carbide-free bainitic steel. Mater Sci Eng A. 2023;888:145814. doi:10.1016/j.msea.2023.145814
  • Wang X, Zhang X, Fang Q, et al. Effect of tempering on stability of retained austenite and tensile properties of nanostructured bainitic steel. Mater Sci Eng A. 2022;856:143958. doi:10.1016/j.msea.2022.143958
  • Hu J, Li X, Meng Q, et al. Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct inter critical rolling. Mater Sci Eng A. 2022;855:143904. doi:10.1016/j.msea.2022.143904
  • Zhao JL, Zhang FC, Lv B, et al. Inconsistent effects of austempering time within transformation stasis on monotonic and cyclic deformation behaviors of an ultrahigh silicon carbide-free nanobainite steel. Mater Sci Eng A. 2019;751:80–89. doi:10.1016/j.msea.2019.01.100
  • Yang DP, Wang T, Miao ZT, et al. Effect of grain size on the intrinsic mechanical stability of austenite in transformation-induced plasticity steels: the competition between martensite transformation and dislocation slip. J Mater Sci Technol. 2023;162:38–43. doi:10.1016/j.jmst.2023.03.013
  • Dong HY, Hu CY, Wu GH, et al. Effect of nickel on hardening behavior and mechanical properties of nanostructured bainite-austenite steels. Mater Sci Eng A. 2021;817:141410. doi:10.1016/j.msea.2021.141410
  • Niu G, Ding C, Liu Z, et al. Achieving high strength and high ductility of dual-phase steel via alternating lamellar microstructure. Mater Sci Eng A. 2024:892:146072. doi:10.1016/j.msea.2024.146072
  • Nie J, Chen Y, Song L, et al. Enhancing strength and ductility of Al-matrix composite via a dual-heterostructure strategy. Int J Plast. 2023;171:103825. doi:10.1016/j.ijplas.2023.103825
  • Wu X, Zhu Y. Gradient and lamellar heterostructures for superior mechanical properties. MRS Bull. 2021;46(3):244–249. doi:10.1557/s43577-021-00056-w
  • Zou Y, Xu YB, Hu ZP, et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite. Mater Sci Eng A. 2017;707:270–279. doi:10.1016/j.msea.2017.09.059