328
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Abnormal grain growth in randomly-oriented fine grains in an Al–Mg–Sc–Zr alloy processed by laser-powder-bed-fusion

, , , , , , , , , & show all
Pages 635-643 | Received 22 Apr 2024, Published online: 20 Jun 2024

References

  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477. doi:10.1016/j.pmatsci.2015.03.002
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Zhang JL, Song B, Wei QS, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270–284. doi:10.1016/j.jmst.2018.09.004
  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578, doi:10.1016/j.pmatsci.2019.100578
  • Schmidtke K, Palm F, Hawkins A, et al. Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Proc. 2011;12:369–374. doi:10.1016/j.phpro.2011.03.047
  • Spierings AB, Dawson K, Voegtlin M, et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. Cirp Ann-Manuf Techn. 2016;65(1):213–216. doi:10.1016/j.cirp.2016.04.057
  • Spierings AB, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment. Mater Sci Eng A. 2017;701:264–273. doi:10.1016/j.msea.2017.06.089
  • Croteau JR, Griffiths S, Rossell MD, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Mater. 2018;153:35–44. doi:10.1016/j.actamat.2018.04.053
  • Wang Z, Lin X, Kang N, et al. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure. Addit Manuf. 2020;34:101260.
  • Wang Z, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40–56. doi:10.1016/j.jmst.2021.03.069
  • Wang Z, Lin X, Wang J, et al. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit Manuf. 2022;59:103093.
  • Jia Q, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al Mn Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108–118. doi:10.1016/j.actamat.2019.04.014
  • Jia Q, Zhang F, Rometsch P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al–Mn–Sc alloy fabricated by selective laser melting. Acta Mater. 2020;193:239–251. doi:10.1016/j.actamat.2020.04.015
  • Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys. Acta Mater. 2001;49(11):1909–1919. doi:10.1016/S1359-6454(01)00116-1
  • Fiocchi J, Tuissi A, Biffi CA. Heat treatment of aluminium alloys produced by laser powder bed fusion: a review. Mater Des. 2021;204:109651.
  • Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al (Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51(16):4803–4814. doi:10.1016/S1359-6454(03)00320-3
  • Chen H, Chen Z, Ji G, et al. Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. Int J Plast. 2021;139:102971, doi:10.1016/j.ijplas.2021.102971
  • Chen X, Chen H, Ma S, et al. Insights into flow stress and work hardening behaviors of a precipitation hardening AlMgScZr alloy: experiments and modeling. Int J Plast. 2024;172:103852.
  • Knipling KE, Karnesky RA, Lee CP, et al. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010;58(15):5184–5195. doi:10.1016/j.actamat.2010.05.054
  • Hillert M. On the theory of normal and abnormal grain growth. Acta Metall. 1965;13(3):227–238. doi:10.1016/0001-6160(65)90200-2
  • Gottstein G, Shvindlerman LS. Grain boundary migration in metals: thermodynamics, kinetics, applications. 2nd ed. Boca Raton: CRC press; 2009.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Oxford: Elsevier; 2012.
  • Gladman T. On the theory of the effect of precipitate particles on grain growth in metals. Proc R Soc Lond A. 1966;294(1438):298–309. doi:10.1098/rspa.1966.0208
  • Rios P. Abnormal grain growth in pure materials. Acta Metall Mater. 1992;40(10):2765–2768. doi:10.1016/0956-7151(92)90346-G
  • Aota LS, Bajaj P, Zilnyk KD, et al. The origin of abnormal grain growth upon thermomechanical processing of laser powder-bed fusion alloys. Materialia. 2021;20:101243.
  • Dunn CG, Walter JL. Secondary recrystallization. In: Margolin H, editor. Recrystallization, grain growth and textures. Ohio: ASM; 1966. p. 461.
  • Abbruzzese G, Lücke K. A theory of texture controlled grain growth—I. Derivation and general discussion of the model. Acta Metall. 1986;34(5):905–914. doi:10.1016/0001-6160(86)90064-7
  • Eichelkraut H, Abbruzzese G, Lücke K. A theory of texture controlled grain growth—II. Numerical and analytical treatment of grain growth in the presence of two texture components. Acta Metall. 1988;36(1):55–68. doi:10.1016/0001-6160(88)90028-4
  • Rios PR. Abnormal grain growth development from uniform grain size distributions due to a mobility advantage. Scripta Mater. 1998;38(9):1359–1364. doi:10.1016/S1359-6462(98)00052-9
  • Srolovitz D, Grest G, Anderson M. Computer simulation of grain growth—V. Abnormal grain growth. Acta Metall. 1985;33(12):2233–2247. doi:10.1016/0001-6160(85)90185-3
  • Bozzolo N, Agnoli A, Souaï N, et al. Strain induced abnormal grain growth in nickel base superalloys. Mater Sci Forum. 2013;753:321–324. doi:10.4028/www.scientific.net/MSF.753.321
  • Jin S, Kang B, Kong T, et al. Strain-induced abnormal grain growth of Fe foils. J Alloys Compd. 2021;853:157390.
  • Chen K, Huang DJ, Li H, et al. Avoiding abnormal grain growth when annealing selective laser melted pure titanium by promoting nucleation. Scripta Mater. 2022;209:114377.
  • Chen K, Li H, Lim CH, et al. Fine grains within narrow temperature range by tuning strain-induced boundary migration dominated recrystallization for selective laser melted Inconel 718. Scripta Mater. 2022;219:114882.
  • Spierings AB, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater Des. 2017;115:52–63. doi:10.1016/j.matdes.2016.11.040
  • Mackenzie JK. Second paper on statistics associated with the random disorientation of cubes. Biometrika. 1958;45(1-2):229–240. doi:10.1093/biomet/45.1-2.229
  • Kendig KL, Miracle DB. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 2002;50(16):4165–4175. doi:10.1016/S1359-6454(02)00258-6
  • Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50(1):19–44. doi:10.1179/174328005X14311
  • Jones MJ, Humphreys FJ. Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater. 2003;51(8):2149–2159. doi:10.1016/S1359-6454(03)00002-8
  • Ferry M, Hamilton NE, Humphreys FJ. Continuous and discontinuous grain coarsening in a fine-grained particle-containing Al-Sc alloy. Acta Mater. 2005;53(4):1097–1109. doi:10.1016/j.actamat.2004.11.006
  • Smith CS. Grains, phases, and interfaces: an introduction of microstructure. Trans AIME. 1948;175:15–51.
  • Nes E, Ryum N, Hunderi O. On the Zener drag. Acta Metall. 1985;33(1):11–22. doi:10.1016/0001-6160(85)90214-7
  • Manohar PA, Ferry M, Chandra T. Five decades of the Zener equation. ISIJ Int. 1998;38(9):913–924. doi:10.2355/isijinternational.38.913
  • Fuller C, Seidman D. Temporal evolution of the nanostructure of Al (Sc, Zr) alloys: part II-coarsening of Al (Sc, Zr) precipitates. Acta Mater. 2005;53(20):5415–5428. doi:10.1016/j.actamat.2005.08.015
  • Thompson CV, Frost HJ, Spaepen F. The relative rates of secondary and normal grain growth. Acta Metall. 1987;35(4):887–890. doi:10.1016/0001-6160(87)90166-0
  • Chen Y, Chen Y, Dan C, et al. On the incompatibility of steady-state assumption and abnormal grain growth in the presence of homogenous pinning. Metall Mater Trans A. 2024;55(1):20–25. doi:10.1007/s11661-023-07227-1
  • Rios PR. Abnormal grain growth development from uniform grain size distributions. Acta Mater. 1997;45(4):1785–1789. doi:10.1016/S1359-6454(96)00284-4
  • Atkinson HV. Theories of normal grain-growth in pure single-phase systems. Acta Metall. 1988;36(3):469–491. doi:10.1016/0001-6160(88)90079-X
  • Fortes MA. The kinetics of grain growth in the scaling and transient regimes. Scripta Mater. 1997;37(5):679–684. doi:10.1016/S1359-6462(97)00139-5
  • Wakai F, Enomoto N, Ogawa H. Three-dimensional microstructural evolution in ideal grain growth—general statistics. Acta Mater. 2000;48(6):1297–1311. doi:10.1016/S1359-6454(99)00405-X
  • Svoboda J, Fratzl P, Zickler GA, et al. A new treatment of transient grain growth. Acta Mater. 2016;115:442–447. doi:10.1016/j.actamat.2016.05.020