460
Views
0
CrossRef citations to date
0
Altmetric
Perspective Piece

Fostering strengths against hydrogen embrittlement: insights from nanotwin-ability and post-treatment effects in additively manufactured CoCrFeMnNi

, , , , , , , , , , & ORCID Icon show all
Pages 689-699 | Received 22 Apr 2024, Published online: 09 Jul 2024

References

  • Shang Y, Lei Z, Alvares E, et al. Ultra-lightweight compositionally complex alloys with large ambient-temperature hydrogen storage capacity. Mater Today. 2023;67:113–126. doi:10.1016/j.mattod.2023.06.012
  • Shahmir H, Mehranpour MS, Arsalan Shams SA, et al. Twenty years of the CoCrFeNiMn high-entropy alloy: achieving exceptional mechanical properties through microstructure engineering. J Mater Res Technol. 2023;23:3362–3423. doi:10.1016/j.jmrt.2023.01.181
  • Sheikh S, Vela B, Attari V, et al. Exploring chemistry and additive manufacturing design spaces: a perspective on computationally-guided design of printable alloys. Mater Res Lett. 2024;12(4):235–263. doi:10.1080/21663831.2024.2316204
  • Yue W, Fan H, Ru W, et al. In-situ study of room temperature tensile deformation of a CrMnFeCoNi high-entropy alloy. J Alloy Compd. 2023;940:168904. doi:10.1016/j.jallcom.2023.168904
  • Bertsch KM, Nygren KE, Wang S, et al. Hydrogen-enhanced compatibility constraint for intergranular failure in FCC FeNiCoCrMn high-entropy alloy. Corros Sci. 2021;184:109407. doi:10.1016/j.corsci.2021.109407
  • Zhao Y, Lee D-H, Seok M-Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr Mater. 2017;135:54–58. doi:10.1016/j.scriptamat.2017.03.029
  • Pu Z, Chen Y, Dai LH. Strong resistance to hydrogen embrittlement of high-entropy alloy. Mater Sci Eng A. 2018;736:156–166. doi:10.1016/j.msea.2018.08.101
  • Gao S, Li Z, Van Petegem S, et al. Additive manufacturing of alloys with programmable microstructure and properties. Nat Commun. 2023;14:6752. doi:10.1038/s41467-023-42326-y
  • Behvar A, Haghshenas M, Djukic MB. Hydrogen embrittlement and hydrogen-induced crack initiation in additively manufactured metals: A critical review on mechanical and cyclic loading. Int J Hydro Energy. 2024;58:1214–1239. doi:10.1016/j.ijhydene.2024.01.232
  • Chen H, He Y, Dash SS, et al. Additive manufacturing of metals and alloys to achieve heterogeneous microstructures for exceptional mechanical properties. Mater Res Lett. 2024;12(3):149–171. doi:10.1080/21663831.2024.2305261
  • Xuan Y, Chang J, Ou Y, et al. Heterogeneous structure architected by additive manufacturing: facile route towards strong and ductile steel. Mater Res Lett. 2024;12(3):199–207. doi:10.1080/21663831.2024.2314145
  • Deirmina F, Amirabdollahian S, Harris L, et al. Laser-directed energy deposition of dissimilar maraging steels with a defect-free interface: Design for improved surface hardness and fracture toughness. Metals Mater Int. 2023;29:2940–2954. doi:10.1007/s12540-023-01424-8
  • Tekumalla S, Seita M, Zaefferer S. Delineating dislocation structures and residual stresses in additively manufactured alloys. Acta Mater; 2023;262:119413.
  • Jiang W, Zhu Y, Zhao Y. Mechanical properties and deformation mechanisms of heterostructured high-rntropy and medium-entropy alloys: A review. Front Mater. 2022;8:1–17.
  • He J, Liu Q, He M, et al. The hydrogen embrittlement of pure Ni fabricated by additive manufacturing. Int J Hydro Energy. 2023;48:16910–16922. doi:10.1016/j.ijhydene.2023.01.167
  • Huang X, Ding S, Yue W. Cryogenic treatment on Ti6Al4 V alloy fabricated by electron beam melting: microstructure and mechanical properties. J Mater Res Technol. 2022;20:3323–3332. doi:10.1016/j.jmrt.2022.08.012
  • Yao E, Zhang H, Ma K, et al. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: a review. J Mater Res Technol. 2023;26:3661–3675. doi:10.1016/j.jmrt.2023.08.140
  • Li H, Zhao W, Chen T, et al. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling. J Mater Sci Technol. 2022;115:40–51. doi:10.1016/j.jmst.2021.11.022
  • Li HG, Huang YJ, Zhao WJ, et al. Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment. Addi Manufact. 2022;50:102546. doi:10.1016/j.addma.2021.102546
  • Luo H, Lu W, Fang X, et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Mater Today. 2018;21:1003–1009. doi:10.1016/j.mattod.2018.07.015
  • Gu GH, Ahn SY, Kim Y, et al. Determining reliable wide-strain-range equivalent stress–strain curves using 3D digital image correlation. J Mater Res Technol. 2022;19:2822–2830. doi:10.1016/j.jmrt.2022.06.054
  • Luo H, Li Z, Raabe D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci Rep. 2017;7:9892. doi:10.1038/s41598-017-10774-4
  • Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016;118:152–163. doi:10.1016/j.actamat.2016.07.038
  • Lee T-H, Shin E, Oh C-S, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater. 2010;58:3173–3186. doi:10.1016/j.actamat.2010.01.056
  • Chen XH, Zhuang XQ, Mo JW, et al. Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron. Mater Res Lett. 2022;10(4):278–286. doi:10.1080/21663831.2022.2033865
  • Lin Y-T, An X, Zhu Z, et al. Effect of cell wall on hydrogen response in CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. J Alloy Compd. 2022;925:166735. doi:10.1016/j.jallcom.2022.166735
  • Tong Z, Ren X, Jiao J, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property. J Alloy Compd. 2019;785:1144–1159. doi:10.1016/j.jallcom.2019.01.213
  • Örnek C, Şeşen BM, Ürgen MK. Understanding hydrogen-induced strain localization in super duplex stainless steel using digital image correlation technique. Metals Mater Int. 2022;28:475–486. doi:10.1007/s12540-021-01123-2
  • Wang Y, Huang C, Ma X, et al. The optimum grain size for strength-ductility combination in metals. Int J Plast. 2023;164:103574. doi:10.1016/j.ijplas.2023.103574
  • Koyama M, Wang H, Verma VK, et al. Effects of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys. Metallur Mater Transact A. 2020;51:5612–5616. doi:10.1007/s11661-020-05966-z
  • Karthik GM, Kim HS. Heterogeneous aspects of additive manufactured metallic Parts: A review. Metals Mater Int. 2021;27:1–39. doi:10.1007/s12540-020-00931-2
  • Zhang C, Zhi H, Antonov S, et al. Hydrogen-enhanced densified twinning (HEDT) in a twinning-induced plasticity (TWIP) steel. Scr Mater. 2021;190:108–112. doi:10.1016/j.scriptamat.2020.08.047
  • Ding Y, Yu H, Lin M, et al. Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation. J Mater Sci Technol. 2024;173:225–236. doi:10.1016/j.jmst.2023.07.027
  • Lee DG, Kim JH, Kim SH, et al. Hydrogen trapping aharacteristics and mechanical degradation in a duplex stainless steel. Metals Mater Int. 2023;29:126–134. doi:10.1007/s12540-022-01212-w
  • Sun LG, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties. Mater Today. 2020;38:114–135. doi:10.1016/j.mattod.2020.04.005
  • Zhao Y, Park J-M, Lee D-H, et al. Influences of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study. Scr Mater. 2019;168:76–80. doi:10.1016/j.scriptamat.2019.04.025
  • Lu X, Ma Y, Peng D, et al. In situ nanomechanical characterization of hydrogen effects on nickel-based alloy 725 under different metallurgical conditions. J Mater Sci Technol. 2023;135:156–169. doi:10.1016/j.jmst.2022.07.006
  • Thurston KVS, Hohenwarter A, Laplanche G, et al. On the onset of deformation twinning in the CrFeMnCoNi high-entropy alloy using a novel tensile specimen geometry. Intermetallics. 2019;110:106469. doi:10.1016/j.intermet.2019.04.012
  • Zhu ZG, Nguyen QB, Ng FL, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater. 2018;154:20–24. doi:10.1016/j.scriptamat.2018.05.015
  • Kim H-J, Cho M-K, Kim G, et al. Influence of hydrogen absorption on stacking fault of energy of a face-centered cubic high entropy alloy. Metals Mater Int. 2022;28:2637–2645. doi:10.1007/s12540-021-01163-8
  • Gibbs PJ, Hough PD, Thürmer K, et al. Stacking fault energy based alloy screening for hydrogen compatibility. JOM. 2020;72:1982–1992. doi:10.1007/s11837-020-04106-7
  • Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater. 2013;61:4607–4618. doi:10.1016/j.actamat.2013.04.030
  • Lee J, Park H, Kim M, et al. Role of hydrogen and temperature in hydrogen embrittlement of equimolar CoCrFeMnNi high-entropy alloy. Metals Mater Int. 2021;27:166–174. doi:10.1007/s12540-020-00752-3
  • Yao J, Tan Q, Venezuela J, et al. Recent research progress in hydrogen embrittlement of additively manufactured metals—A review. Current Opinion Solid State Mater Sci. 2023;27:101106. doi:10.1016/j.cossms.2023.101106
  • Galindo-Nava EI, Basha BIY, Rivera-Díaz-del-Castillo PEJ. Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing. J Mater Sci Technol. 2017;33:1433–1447. doi:10.1016/j.jmst.2017.09.011
  • Huang CX, Hu WP, Wang QY, et al. An ideal ultrafine-grained structure for high strength and high ductility. Mater Res Lett. 2015;3(2):88–94. doi:10.1080/21663831.2014.968680
  • Birnbaum HK, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater Sci Eng A. 1994;176:191–202. doi:10.1016/0921-5093(94)90975-X
  • Cheng H, Luo H, Pan Z, et al. Effects of laser powder bed fusion process parameters on microstructure and hydrogen embrittlement of high-entropy alloy. J Mater Sci Technol. 2023;155:211–226. doi:10.1016/j.jmst.2022.12.074
  • Lai Z-H, Lin Y-T, Sun Y-H, et al. Hydrogen-induced ductilization in a novel austenitic lightweight TWIP steel. Scr Mater. 2022;213:114629. doi:10.1016/j.scriptamat.2022.114629