138
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Is there an effect of dynamic strain aging on dislocation evolution?

, , &
Pages 719-726 | Received 05 Feb 2024, Published online: 25 Jul 2024

References

  • McCormick PG. The Portevin-Le Chatelier effect in an Al-Mg-Si alloy. Acta Metall. 1971;19(5):463–471. doi:10.1016/0001-6160(71)90170-2
  • Yilmaz A. The Portevin-Le Chatelier effect: a review of experimental findings. Sci Technol Adv Mate. 2011;12(6):063001. doi:10.1088/1468-6996/12/6/063001
  • Benallal A, Berstad T, Børvik T, et al. An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect. Int J Plast. 2008;24(10):1916–1945. doi:10.1016/j.ijplas.2008.03.008
  • Corby C, Cáceres CH, Lukáč P. Serrated flow in magnesium alloy AZ91. Mater Sci Eng A. 2004;387-389:22–24.
  • Onodera R, Ishibashi T, Era H, et al. The Portevin-Le Chatelier effects in Cu-Ti, Cu-P and Cu-Si alloys. Acta Metall. 1984;32(5):817–822. doi:10.1016/0001-6160(84)90155-X
  • Banerjee S, Naik UM. Plastic instability in an omega forming Ti-15% Mo alloy. Acta Mater. 1996;44(9):3667–3677. doi:10.1016/1359-6454(96)00012-2
  • Zavattieri PD, Savic V, Hector LG, et al. Spatio-temporal characteristics of the Portevin–Le Châtelier effect in austenitic steel with twinning induced plasticity. Int J Plast. 2009;25(12):2298–2330. doi:10.1016/j.ijplas.2009.02.008
  • Huang C, Hu C, Liu Y, et al. Recent developments and perspectives of advanced high-strength medium Mn steel: from material design to failure mechanisms. Mater Futures. 2022;1(3):032001. doi:10.1088/2752-5724/ac7fae
  • Tsai C-W, Lee C, Lin P-T, et al. Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. Int J Plast. 2019;122:212–224. doi:10.1016/j.ijplas.2019.07.003
  • Brechtl J, Chen SY, Xie X, et al. Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. Int J Plast. 2019;115:71–92. doi:10.1016/j.ijplas.2018.11.011
  • Curtin WA, Olmsted DL, Hector LG. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat Mater. 2006;5(11):875–880. doi:10.1038/nmat1765
  • Lee S-J, Kim J, Kane SN, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 2011;59(17):6809–6819. doi:10.1016/j.actamat.2011.07.040
  • Picu RC. A mechanism for the negative strain-rate sensitivity of dilute solid solutions. Acta Mater. 2004;52(12):3447–3458. doi:10.1016/j.actamat.2004.03.042
  • Halim H, Wilkinson DS, Niewczas M. The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater. 2007;55(12):4151–4160. doi:10.1016/j.actamat.2007.03.007
  • Yu H-Y, Lee S-M, Nam J-H, et al. Post-uniform elongation and tensile fracture mechanisms of Fe-18Mn-0.6C-xAl twinning-induced plasticity steels. Acta Mater. 2017;131:435–444. doi:10.1016/j.actamat.2017.04.011
  • Koyama M, Shimomura Y, Chiba A, et al. Room-temperature blue brittleness of Fe-Mn-C austenitic steels. Scr Mater. 2017;141:20–23. doi:10.1016/j.scriptamat.2017.07.017
  • Canadinc D, Efstathiou C, Sehitoglu H. On the negative strain rate sensitivity of Hadfield steel. Scr Mater. 2008;59(10):1103–1106. doi:10.1016/j.scriptamat.2008.07.027
  • Kim J, Estrin Y, De Cooman BC. Application of a dislocation density-based constitutive model to Al-alloyed TWIP steel. Metall Mater Trans A. 2013;44(9):4168–4182. doi:10.1007/s11661-013-1771-2
  • Kim J, Estrin Y, Beladi H, et al. Constitutive modeling of the tensile behavior of Al-TWIP steel. Metall Mater Trans A. 2012;43(2):479–490. doi:10.1007/s11661-011-0898-2
  • van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A. 1975;30(1):197–206. doi:10.1002/pssa.2210300120
  • Chen H, Chen Z, Liu J, et al. Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging. Materialia. 2021;18:101137. doi:10.1016/j.mtla.2021.101137
  • Koyama M, Sawaguchi T, Tsuzaki K. Overview of dynamic strain aging and associated phenomena in Fe–Mn–C austenitic steels. ISIJ Int. 2018;58(8):1383–1395. doi:10.2355/isijinternational.ISIJINT-2018-237
  • Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel. Scr Mater. 2006;55(4):299–302. doi:10.1016/j.scriptamat.2006.05.002
  • Soares GC, Queiroz RRU, Santos LA. Effects of dynamic strain aging on strain hardening behavior, dislocation substructure, and fracture morphology in a ferritic stainless steel. Metall Mater Trans A. 2020;51(2):725–739. doi:10.1007/s11661-019-05574-6
  • Koyama M, Sawaguchi T, Tsuzaki K. Inverse grain size dependence of critical strain for serrated flow in a Fe–Mn–C twinning-induced plasticity steel. Philos Mag Lett. 2012;92(3):145–152. doi:10.1080/09500839.2011.640645
  • Robinson JM, Shaw MP. Microstructural and mechanical influences on dynamic strain aging phenomena. Int Mater Rev. 1994;39(3):113–122. doi:10.1179/imr.1994.39.3.113
  • Mola J, Luan G, Huang Q, et al. Dynamic strain aging mechanisms in a metastable austenitic stainless steel. Acta Mater. 2021;212:116888. doi:10.1016/j.actamat.2021.116888
  • Hooshmand MS, Ghazisaeidi M. Solute/twin boundary interaction as a new atomic-scale mechanism for dynamic strain aging. Acta Mater. 2020;188:711–719. doi:10.1016/j.actamat.2020.01.066
  • Cheng X-M, Morris JG. The anisotropy of the Portevin-Le Chatelier effect in aluminum alloys. Scr Mater. 2000;43(7):651–658. doi:10.1016/S1359-6462(00)00474-7
  • Peng XX, Wang LY, Xu W, et al. Crystal orientation dependence of the Portevin–Le Chatelier effect in instrumented indentation: a case study in twinning-induced plasticity steels. Metals (Basel). 2022;12(3):439. doi:10.3390/met12030439
  • Seo EJ, Kim JK, Cho L, et al. Micro-plasticity of medium Mn austenitic steel: perfect dislocation plasticity and deformation twinning. Acta Mater. 2017;135:112–123. doi:10.1016/j.actamat.2017.06.014
  • Durst K, Maier V. Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr Opin Solid State Mater Sci. 2015;19(6):340–353. doi:10.1016/j.cossms.2015.02.001
  • Peng XX, Wang LY, Xu W, et al. Correlations between the plastic instabilities occurring in indentation and the Portevin Le-Chatelier effect in uniaxial tension. Mater Sci Eng A. 2022;854:143799. doi:10.1016/j.msea.2022.143799
  • Chinh NQ, Gubicza J, Kovács Z, et al. Depth-sensing indentation tests in studying plastic instabilities. J Mater Res. 2004;19(1):31–45. doi:10.1557/jmr.2004.19.1.31
  • Chinh NQ, Horváth G, Kovács Z, et al. Kinematic and dynamic characterization of plastic instabilities occurring in nano- and microindentation tests. Mater Sci Eng A. 2005;409(1):100–107. doi:10.1016/j.msea.2005.04.057
  • Bérces G, Chinh NQ, Juhász A, et al. Kinematic analysis of plastic instabilities occurring in microhardness tests. Acta Mater. 1998;46(6):2029–2037. doi:10.1016/S1359-6454(97)00428-X
  • Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30(3):601–610. doi:10.1007/s11661-999-0051-7
  • Verma S, Sarkar P, Pant P. Thermal drift in room temperature nanoindentation experiments: Measurement and correction. J Mater Res. 2021;36(17):3436–3444. doi:10.1557/s43578-021-00386-0
  • Shang XK, Guan QW, He BB. Enhanced strain hardening induced by twin boundary-dislocation interaction in micro-pillar compression of CoCrNi medium-entropy alloy. Materialia. 2022;24:101491. doi:10.1016/j.mtla.2022.101491
  • Williams DB, Carter CB. Transmission electron microscopy. New York: Springer; 2009.
  • Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48(3):171–273. doi:10.1016/S0079-6425(02)00003-8
  • Messerschmidt U. Dislocation kinetics, work-hardening, and recovery. In: Hull R, Jagadish C, Kawazoe Y, et al., editors. Dislocation dynamics during plastic deformation. Berlin: Springer; 2010. p. 155-201.
  • Mulford RA, Kocks UF. New observations on the mechanisms of dynamic strain aging and of jerky flow. Acta Metall. 1979;27(7):1125–1134. doi:10.1016/0001-6160(79)90130-5
  • Pharr GM, Herbert EG, Gao Y. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res. 2010;40:271–292. doi:10.1146/annurev-matsci-070909-104456
  • Liang ZY, Wang X, Huang W, et al. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 2015;88:170–179. doi:10.1016/j.actamat.2015.01.013
  • Liang ZY, Li YZ, Huang MX. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scr Mater. 2016;112:28–31. doi:10.1016/j.scriptamat.2015.09.003
  • Luo ZC, Huang MX. Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scr Mater. 2018;142:28–31. doi:10.1016/j.scriptamat.2017.08.017
  • Luo ZC, Huang MX. The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels. Scr Mater. 2020;178:264–268. doi:10.1016/j.scriptamat.2019.11.047