12
Views
0
CrossRef citations to date
0
Altmetric
Original Reports

Low-alloy content Ti-Mo-based alloys with large superelasticity and narrow stress hysteresis for potential biomedical applications

, , , &
Pages 759-768 | Received 25 Mar 2024, Published online: 28 Jul 2024

References

  • Kim HY, Miyazaki S. Ni-free Ti-based shape memory alloys. Oxford: Butterworth-Heinemann; 2018.
  • Ijaz MF, Kim HY, Hosoda H, et al. Effect of Sn addition on stress hysteresis and superelastic properties of a Ti-15Nb-3Mo alloy. Scr Mater 2014;72–73:29–32. doi:10.1016/j.scriptamat.2013.10.007
  • Endoh K, Tahara M, Inamura T, et al. Effect of Sn and Zr content on superelastic properties of Ti-Mo-Sn-Zr biomedical alloys. Mater Sci Eng A. 2017;704:72–76. doi:10.1016/j.msea.2017.07.097
  • Li S, Kim JH, Kang SW, et al. Superelastic metastable Ti-Mo-Sn alloys with high elastic admissible strain for potential bio-implant applications. J Mater Sci Tech. 2023;163:45–58. doi:10.1016/j.jmst.2023.01.061
  • Wang CH, Liu M, Hu PF, et al. The effects of α″ and ω phases on the superelasticity and shape memory effect of binary Ti-Mo alloys. J Alloy Compd. 2017;720:488–496. doi:10.1016/j.jallcom.2017.05.299
  • Davis R, Flower HM, West DF. Martensitic transformation in Ti-Mo alloys. J Mater Sci 1979;14:712–722. doi:10.1007/BF00772735
  • Sidhu SS, Singh H, Gepreel MA. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater Sci Eng C. 2021;121:111661. doi:10.1016/j.msec.2020.111661
  • Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans 2002;43:2978–2983. doi:10.2320/matertrans.43.2978
  • Nohira N, Chiu WT, Umise A, et al. Achievement of room temperature superelasticity in Ti-Mo-Al alloy system via manipulation of ω phase stability. Materials (Basel). 2022;15:861. doi:10.3390/ma15030861
  • Yang ZY, Zheng XH, Cai W. Martensitic transformation and shape memory effect of Ti-V-Al lightweight high-temperature shape memory alloys. Scr Mater. 2015;99:97–100. doi:10.1016/j.scriptamat.2014.11.038
  • Kim HY, Fu J, Tobe H, et al. Crystal structure, transformation strain, and superelastic property of Ti-Nb-Zr and Ti-Nb-Ta alloys. Shap Mem Superelasticity. 2015;1:107–116. doi:10.1007/s40830-015-0022-3
  • Minami D, Uesugi T, Takigawa Y, et al. First-principles study of transformation strains and phase stabilities in α″ and β Ti-Nb-X alloys. J Alloy Compd. 2017;716:37–45. doi:10.1016/j.jallcom.2017.05.046
  • Farooq MU, Khalid FA, Zaigham H, et al. Superelastic behaviour of Ti-Nb-Al ternary shape memory alloys for biomedical applications. Mater Lett. 2014;121:58–61. doi:10.1016/j.jallcom.2017.05.046
  • Kim HY, Nakai K, Fu J, et al. Effect of Al on superelastic properties of Ti-Zr-Nb-based alloys. Funct Mater Lett. 2017;10:1740002. doi:10.1142/S1793604717400021
  • Kim J, Lim J, Kim JG, et al. Microstructure, transformation behavior and superelasticity of an aged Ti-40Ni-12Cu (at%) shape memory alloy. J Alloy Compd. 2022;900:163390. doi:10.1016/j.jallcom.2021.163390
  • Maeshima T, Ushimaru S, Yamauchi K, et al. Effect of heat treatment on shape memory effect and superelasticity in Ti-Mo-Sn alloys. Mater Sci Eng A. 2006;438–440:844–847. doi:10.1016/j.msea.2006.05.092
  • Maeshima T, Ushimaru S, Yamauchi K, et al. Effects of Sn content and aging conditions on superelasticity in biomedical Ti-Mo-Sn alloys. Mater Trans. 2006;47:513–517. doi:10.2320/matertrans.47.513
  • Sutou Y, Yamauchi K, Takagi T, et al. Mechanical properties of Ti-6at.% Mo-4at.% Sn alloy wires and their application to medical guidewire. Mater Sci Eng A. 2006;438–440:1097–1100. doi:10.1016/j.msea.2006.01.116
  • Fu J, Yamamoto A, Kim HY, et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 2015;17:56–67. doi:10.1016/j.actbio.2015.02.001
  • Li S, Lee WT, Yeom JT, et al. Towards bone-like elastic modulus in Ti-Nb-Sn alloys with large recovery strain for biomedical applications. J Alloy Compd. 2022;925:166724. doi:10.1016/j.jallcom.2022.166724
  • Pavόn LL, Kim HY, Hosoda H, et al. Effect of Nb content and heat treatment temperature on superelastic properties of Ti-24Zr-(8–12)Nb-2Sn alloys. Scr Mater. 2015;95:46–49. doi:10.1016/j.scriptamat.2014.09.029
  • Fu J, Kim HY, Miyazaki S. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. J Mech Behav Biomed Mater. 2017;65:716–723. doi:10.1016/j.jmbbm.2016.09.036
  • Li S, Rehman IU, Lim JH, et al. Effect of Sn content on microstructure, texture evolution, transformation behavior and superelastic properties of Ti-20Zr-9Nb-(2–5)Sn (at.%) shape memory alloys. Mater Sci Eng A. 2021;827:141994. doi:10.1016/j.msea.2021.141994
  • Li S, Lim JH, Rehman IU, et al. Tuning the texture characteristics and superelastic behaviors of Ti-Zr-Nb-Sn shape memory alloys by varying Nb content. Mater Sci Eng A. 2022;845:143243. doi:10.1016/j.msea.2022.143243
  • Ijaz MF, Kim HY, Hosoda H, et al. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys. Mater Sci Eng C. 2015;48:11–20. doi:10.1016/j.msec.2014.11.010
  • Li S, Nam TH. Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications. Intermetallics. 2019;112:106545. doi:10.1016/j.intermet.2019.106545
  • Cai S, Schaffer JE, Ren Y. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys. Mater Sci Eng A. 2017;680:13–20. doi:10.1016/j.msea.2016.10.060
  • Kim JI, Kim HY, Inamura T, et al. Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr (at%) biomedical alloy. Mater Trans. 2006;47:505–512. doi:10.2320/matertrans.47.505
  • Sun F, Nowak S, Gloriant T, et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy. Scr Mater. 2010;63:1053–1056. doi:10.1016/j.scriptamat.2010.07.042
  • Al-Zain Y, Sato Y, Kim HY, et al. Room temperature aging behavior of Ti-Nb-Mo-based superelastic alloys. Acta Mater. 2012;60:2437–2447. doi:10.1016/j.actamat.2011.12.033
  • Ma LW, Cheng HS, Chung CY, et al. Superelastic behavior and microstructure of Ti19Nb9Zr1Mo (at%) alloy. Mater Lett. 2013;109:172–174. doi:10.1016/j.matlet.2013.07.083
  • Tasaki W, Akiyama Y, Koyano T, et al. Martensitic transformation and shape memory effect of TiZrHf-based multicomponent alloys. J Alloy Compd. 2023;931:167496. doi:10.1016/j.jallcom.2022.167496
  • Hosoda H, Taniguchi M, Inamura T, et al. Effect of aging on mechanical properties of Ti-Mo-Al biomedical shape memory alloy. Mater Sci Forum. 2010;654–656:2150–2153. doi:10.4028/www.scientific.net/MSF.654-656.2150
  • Zhou T, Aindow M, Alpay SP, et al. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy. Scr Mater. 2004;50:343–348. doi:10.1016/j.scriptamat.2003.10.012
  • Hao YL, Li SJ, Sun SY, et al. Elastic deformation behavior of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007;3:277–286. doi:10.1016/j.actbio.2006.11.002
  • Xiong C, Li Y, Zhang J, et al. Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. J Alloy Compd. 2021;853:157090. doi:10.1016/j.jallcom.2020.157090
  • Wang L, Fu C, Wu Y, et al. Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation. Scr Mater. 2019;162:112–117. doi:10.1016/j.scriptamat.2018.10.035
  • Cai S, Daymond MR, Ren Y, et al. Influence of short time anneal on recoverable strain of beta III titanium alloy. Mater Sci Eng A. 2013;562:172–179. doi:10.1016/j.msea.2012.11.005
  • Song J, Zhang X, Fan Z, et al. Mechanical deformation and tensile super-elastic behaviors of a Ti-Mo based shape memory alloy. Proceedings Volume 7977, Active and Passive Smart Structures and Integrated Systems, 2011; SPIE. p. 869–878. doi:10.1117/12.881851
  • Xu Z, Hao Y, Ji Y, et al. Simultaneously increasing the strength and decreasing the modulus in TiNi alloys via plastic deformation. Scr Mater. 2022;209:114374. doi:10.1016/j.scriptamat.2021.114374
  • Liu X, Wu S, Yeung KWK, et al. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials. 2011;32:330–338. doi:10.1016/j.biomaterials.2010.08.102
  • Al-Zain Y, Kim HY, Koyano T, et al. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys. Acta Mater. 2011;59:1464–1473. doi:10.1016/j.actamat.2010.11.008
  • Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue II. Friction stress and back stress as inferred from an analysis of hysteresis loops. Mater Sci Eng. 1979;37:111–120. doi:10.1016/0025-5416(79)90074-0