2,421
Views
16
CrossRef citations to date
0
Altmetric
Original Research Papers

On the state-of-the-art of particle methods for coastal and ocean engineering

&
Pages 79-103 | Received 28 Nov 2017, Accepted 26 Dec 2017, Published online: 26 Feb 2018

References

  • Adami, S., X. Y. Hu, and N. A. Adams. 2013. “A Transport-Velocity Formulation for Smoothed Particle Hydrodynamics.” Journal of Computational Physics 241: 292–307. doi:10.1016/j.jcp.2013.01.043.
  • Akbari, H. 2017. “Simulation of Wave Overtopping Using an Improved SPH Method.” Coastal Engineering 126: 51–68. doi:10.1016/j.coastaleng.2017.04.010.
  • Allen, T. 2013 “Mechanics of Flexible Composite Hull Panels Subjected to Water Impacts.” Ph.D. Thesis, University of Auckland.
  • Altomare, C., A. J. C. Crespo, J. M. Domínguez, M. Gómez-Gesteira, T. Suzuki, and T. Verwaest. 2015a. “Applicability of Smoothed Particle Hydrodynamics for Estimation of Sea Wave Impact on Coastal Structures.” Coastal Engineering 96: 1–12. doi:10.1016/j.coastaleng.2014.11.001.
  • Altomare, C., A. J. C. Crespo, B. D. Rogers, J. M. Domínguez, X. Gironella, and M. Gómez-Gesteira. 2014. “Numerical Modelling of Armour Block Sea Breakwater with Smoothed Particle Hydrodynamics.” Computers and Structures 130: 34–45. doi:10.1016/j.compstruc.2013.10.011.
  • Altomare, C., J. M. Domínguez, A. J. C. Crespo, J. González-Cao, T. Suzuki, M. Gómez-Gesteira, and P. Troch. 2017. “Long-Crested Wave Generation and Absorption for SPH-based DualSPHysics Model.” Coastal Engineering 127: 37–54. doi:10.1016/j.coastaleng.2017.06.004.
  • Altomare, C., J. M. Domínguez, A. J. C. Crespo, T. Suzuki, I. Caceres, and M. Gómez-Gesteira. 2015b. “Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications.” Coastal Engineering Journal 57 (4): 1550024. doi:10.1142/S0578563415500242.
  • Antoci, C., M. Gallati, and S. Sibilla. 2007. “Numerical Simulation of Fluid-Structure Interaction by SPH.” Computers and Structures 85 (11): 879–890. doi:10.1016/j.compstruc.2007.01.002.
  • Antuono, M., A. Colagrossi, and S. Marrone. 2012. “Numerical Diffusive Terms in Weakly-Compressible SPH Schemes.” Computer Physics Communications 183: 2570–2580. doi:10.1016/j.cpc.2012.07.006.
  • Antuono, M., A. Colagrossi, S. Marrone, and D. Molteni. 2010. “Free-Surface Flows Solved by Means of SPH Schemes with Numerical Diffusive Terms.” Computer Physics Communications 181: 532–549. doi:10.1016/j.cpc.2009.11.002.
  • Antuono, M., S. Marrone, A. Colagrossi, and B. Bouscasse. 2015. “Energy Balance in the δ-SPH Scheme.” Computer Methods in Applied Mechanics and Engineering 289: 209–226. doi:10.1016/j.cma.2015.02.004.
  • Aristodemo, F., G. Tripepi, D. D. Meringolo, and P. Veltri. 2017. “Solitary Wave-Induced Forces on Horizontal Circular Cylinders: Laboratory Experiments and SPH Simulations.” Coastal Engineering 129: 17–35. doi:10.1016/j.coastaleng.2017.08.011.
  • Barreiro, A., A. J. C. Crespo, J. M. Domínguez, and M. Gómez-Gesteira. 2013. “Smoothed Particle Hydrodynamics for Coastal Engineering Problems.” Computers and Structures 120: 96–106. doi:10.1016/j.compstruc.2013.02.010.
  • Bilotta, G., A. Vorobyev, A. Hérault, D. Violeau, and C. D. Negro. 2014. “SPH for the Simulation of a dam-Break with Floating Objects.” In Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry, edited by G. Russo, V. Capasso, G. Nicosia, and V. Romano. Vol. 22. Cham: Springer.
  • Bouscasse, B., A. Colagrossi, S. Marrone, and M. Antuono. 2013. “Nonlinear Water Wave Interaction with Floating Bodies in SPH.” Journal of Fluids and Structures 42: 112–129. doi:10.1016/j.jfluidstructs.2013.05.010.
  • Bouscasse, B., A. Colagrossi, S. Marrone, and A. Souto-Iglesias. 2017. “SPH Modelling of Viscous Flow past a Circular Cylinder Interacting with a Free Surface.” Computers and Fluids 146: 190–212. doi:10.1016/j.compfluid.2017.01.011.
  • Bui, H. H., and G. D. Nguyen. 2017. “A Coupled Fluid-Solid SPH Approach to Modelling Flow through Deformable Porous Media.” International Journal of Solids and Structures 125: 244–264. doi:10.1016/j.ijsolstr.2017.06.022.
  • Canelas, R. B., M. Brito, R. M. L. Ferreira, O. G. Feal, J. M. Domínguez, and A. J. C. Crespo. 2017a. “DualSPHysics, Applications of a HPC Multiphysics Simulation Framework.” Proceedings of SPHERIC 2017, 12th international SPHERIC workshop, Ourense, Spain, June 13 –15.
  • Canelas, R. B., A. J. C. Crespo, J. M. Domínguez, R. M. L. Ferreira, and M. Gómez-Gesteira. 2016. “SPH-DCDEM Model for Arbitrary Geometries in Free Surface Solid-Fluid Flows.” Computer Physics Communications 202: 131–140. doi:10.1016/j.cpc.2016.01.006.
  • Canelas, R. B., J. M. Domínguez, A. J. C. Crespo, M. Gómez-Gesteira, and R. M. L. Ferreira. 2017b. “Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model.” Journal of Hydraulic Engineering 143 (9): 06017012. doi:10.1061/(ASCE)HY.1943-7900.0001331.
  • Cercos-Pita, J. L., M. Antuono, A. Colagrossi, and A. Souto-Iglesias. 2017. “SPH Energy Conservation for Fluid–Solid Interactions.” Computer Methods in Applied Mechanics and Engineering 317: 771–791. doi:10.1016/j.cma.2016.12.037.
  • Cercos-Pita, J. L., R. A. Dalrymple, and A. Hérault. 2016. “Diffusive Terms for the Conservation of Mass Equation in SPH.” Applied Mathematical Modelling 40: 8722–8736. doi:10.1016/j.apm.2016.05.016.
  • Chorin, A. J. 1968. “Numerical Solution of the Navier-Stokes Equations.” Mathematics of Computations 22: 745–762. doi:10.1090/S0025-5718-1968-0242392-2.
  • Coetzee, C. J. 2017. “Review: Calibration of the Discrete Element Method.” Powder Technology 310: 104–142. doi:10.1016/j.powtec.2017.01.015.
  • Colagrossi, A., M. Antuono, A. Souto-Iglesias, and D. Le Touzé. 2011. “Theoretical Analysis and Numerical Verification of the Consistency of Viscous Smoothed-Particle-Hydrodynamics Formulations in Simulating Free-Surface Flows.” Physical Review E 84 (2): 0.39901. doi:10.1103/PhysRevE.84.039901.
  • Colagrossi, A., and M. Landrini. 2003. “Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics.” Journal of Computational Physics 191 (2): 448–475. doi:10.1016/S0021-9991(03)00324-3.
  • Colagrossi, A., S. Marrone, B. Bouscasse, and R. Broglia. 2015. “Numerical Simulations of the Flow past Surface-Piercing Objects.” International Journal of Offshore and Polar Engineering 25 (1): 13–18.
  • Crespo, A. J. C., C. Altomare, J. M. Domínguez, J. González-Cao, and M. Gómez-Gesteira. 2017. “Towards Simulating Floating Offshore Oscillating Water Column Converters with Smoothed Particle Hydrodynamics.” Coastal Engineering 126: 11–26. doi:10.1016/j.coastaleng.2017.05.001.
  • Crespo, A. J. C., J. M. Domínguez, A. Barreiro, M. Gómez-Gesteira, and B. D. Rogers. 2011. “GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods.” PLoS ONE 6: e20685. doi:10.1371/journal.pone.0020685.
  • Crespo, A. J. C., J. M. Domínguez, B. D. Rogers, M. Gómez-Gesteira, S. Longshawb, R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal. 2015. “DualSPHysics: Open-Source Parallel CFD Solver Based on Smoothed Particle Hydrodynamics (SPH).” Computer Physics Communications 187: 204–216. doi:10.1016/j.cpc.2014.10.004.
  • Crespo, A. J. C., M. Gómez-Gesteira, P. Carracedo, and R. A. Dalrymple. 2008. “Hybridation of Generation Propagation Models and SPH Model to Study Severe Sea States in Galician Coast.” Journal of Marine Systems 72: 135–144. doi:10.1016/j.jmarsys.2007.05.018.
  • Cummins, S. J., and M. Rudman. 1999. “An SPH Projection Method.” Journal of Computational Physics 152: 584–607. doi:10.1006/jcph.1999.6246.
  • Cundall, P. A., and O. D. L. Strack. 1979. “A Discrete Numerical Model for Granular Assemblies.” Geotechnique 29: 47–65. doi:10.1680/geot.1979.29.1.47.
  • Dalrymple, R. A., and B. D. Rogers. 2006. “Numerical Modeling of Water Waves with the SPH Method.” Coastal Engineering 53 (2): 141–147. doi:10.1016/j.coastaleng.2005.10.004.
  • Domínguez, J. M., A. J. C. Crespo, D. Valdez-Balderas, B. D. Rogers, and M. Gómez-Gesteira. 2013. “New multi-GPU Implementation for Smoothed Particle Hydrodynamics on Heterogeneous Clusters.” Computer Physics Communications 184 (8): 1848–1860. doi:10.1016/j.cpc.2013.03.008.
  • Duan, G., B. Chen, X. Zhang, and Y. Wang. 2017. “A Multiphase MPS Solver for Modeling Multi-Fluid Interaction with Free Surface and Its Application in Oil Spill.” Computer Methods in Applied Mechanics and Engineering 320: 133–161. doi:10.1016/j.cma.2017.03.014.
  • Farahani, R. J., and R. A. Dalrymple. 2014. “Three-Dimensional Reversed Horseshoe Vortex Structures under Broken Solitary Waves.” Coastal Engineering 91: 261–279. doi:10.1016/j.coastaleng.2014.06.006.
  • Farahani, R. J., R. A. Dalrymple, A. Hérault, and G. Bilotta. 2014. “Three-Dimensional SPH Modeling of a Bar/Rip Channel System.” Journal of Waterway, Port, Coastal, and Ocean Engineering 140 (1): 82–99. doi:10.1061/(ASCE)WW.1943-5460.0000214.
  • Fernandez-Gutierrez, D., A. Souto-Iglesias, and T. I. Zohdi. 2017. “A Hybrid Lagrangian Voronoi-SPH Scheme.” Proceedings of SPHERIC 2017, 12th international SPHERIC workshop, Ourense, Spain, June 13–15. doi:10.1007/s40571-017-0173-4.
  • Ferrand, M., A. Joly, C. Kassiotis, D. Violeau, A. Leroy, F. X. Morel, and B. D. Rogers. 2017. “Unsteady Open Boundaries for SPH Using Semi-Analytical Conditions and Riemann Solver in 2D.” Computer Physics Communications 210: 29–44. doi:10.1016/j.cpc.2016.09.009.
  • Ferrand, M., D. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis. 2012. “Unified Semi-Analytical Wall Boundary Conditions for Inviscid, Laminar or Turbulent Flows in the Meshless SPH Method.” International Journal for Numerical Methods in Fluids 71 (4): 446–472. doi:10.1002/fld.3666.
  • Foias, C., O. Manley, R. Rosa, and R. Temam. 2001. Navier-Stokes Equations and Turbulence, 364. Cambridge: Cambridge University Press.
  • Fourey, G., C. Hermange, D. Le Touzé, and G. Oger. 2017. “An Efficient FSI Coupling Strategy between Smoothed Particle Hydrodynamics and Finite Element Methods.” Computer Physics Communications 217: 66–81. doi:10.1016/j.cpc.2017.04.005.
  • Fourey, G., G. Oger, D. Le Touzé, and B. Alessandrini. 2010. “Violent Fluid-Structure Interaction Simulations Using a Coupled SPH/FEM Method.” IOP Conference Series: Materials Science and Engineering 10 (1): 012041. doi:10.1088/1757-899X/10/1/012041.
  • Fourtakas, G., and B. D. Rogers. 2016. “Modelling Multi-Phase Liquid-Sediment Scour and Resuspension Induced by Rapid Flows Using Smoothed Particle Hydrodynamics (SPH) Accelerated with a Graphics Processing Unit (GPU).” Advances in Water Resources 92: 186–199. doi:10.1016/j.advwatres.2016.04.009.
  • Fourtakas, G., P. K. Stansby, B. D. Rogers, and S. J. Lind. 2018. “An Eulerian-Lagrangian Incompressible SPH Formulation (ELI-SPH) Connected with a Sharp Interface.” Computer Methods in Applied Mechanics and Engineering 329: 532–552. doi:10.1016/j.cma.2017.09.029.
  • Fourtakas, G., P. K. Stansby, B. D. Rogers, S. J. Lind, S. Yan, and Q. W. Ma. 2017. “On the Coupling of Incompressible SPH with a Finite Element Potential Flow Solver for Nonlinear Free Surface Flows.” Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference (ISOPE), San Francisco, CA, USA, June 25–30.
  • Gao, R., B. Ren, G. Y. Wang, and Y. X. Wang. 2012. “Numerical Modelling of Regular Wave Slamming on Subface of Open-Piled Structures with the Corrected SPH Method.” Applied Ocean Research 34: 173–186. doi:10.1016/j.apor.2011.08.002.
  • Ghaïtanellis, A., D. Violeau, M. Ferrand, K. E. K. Abderrezzak, A. Leroy, and A. Joly. 2018. “A SPH Elastic-Viscoplastic Model for Granular flows and Bed-Load Transport.” Advances in Water Resources 111: 156–173. doi:10.1016/j.advwatres.2017.11.007.
  • Gingold, R. A., and J. J. Monaghan. 1977. “Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars.” Monthly Notices of the Royal Astronomical Society 181: 375–389. doi:10.1093/mnras/181.3.375.
  • Gómez-Gesteira, M., D. Cerqueiro, C. Crespo, and R. A. Dalrymple. 2005. “Green Water Overtopping Analyzed with a SPH Model.” Ocean Engineering 32: 223–238. doi:10.1016/j.oceaneng.2004.08.003.
  • Gómez-Gesteira, M., A. J. C. Crespo, B. D. Rogers, R. A. Dalrymple, J. M. Dominguez, and A. Barreiro. 2012b. “SPHysics–Development of a Free-Surface Fluid solver–Part 2: Efficiency and Test Cases.” Computers & Geosciences 48: 300–307. doi:10.1016/j.cageo.2012.02.028.
  • Gómez-Gesteira, M., B. D. Rogers, A. J. C. Crespo, R. A. Dalrymple, M. Narayanaswamy, and J. M. Dominguez. 2012a. “SPHysics–Development of a Free-Surface Fluid solver–Part 1: Theory and Formulations.” Computers & Geosciences 48: 289–299. doi:10.1016/j.cageo.2012.02.029.
  • Gong, K., S. Shao, H. Liu, B. Wang, and S. K. Tan. 2016. “Two-Phase SPH Simulation of Fluid –Structure Interactions.” Journal of Fluids and Structures 65: 155–179. doi:10.1016/j.jfluidstructs.2016.05.012.
  • Gotoh, H., and A. Khayyer. 2016. “Current Achievements and Future Perspectives for Projection-Based Particle Methods with Applications in Ocean Engineering.” Journal of Ocean Engineering and Marine Energy 2: 251–278. doi:10.1007/s40722-016-0049-3.
  • Gotoh, H., A. Khayyer, H. Ikari, T. Arikawa, and K. Shimosako. 2014. “On Enhancement of Incompressible SPH Method for Simulation of Violent Sloshing Flows.” Applied Ocean Research 46: 104–105. doi:10.1016/j.apor.2014.02.005.
  • Gotoh, H., and A. Okayasu. 2017. “Computational Wave Dynamics for Innovative Design of Coastal Structures.” Proceedings of the Japan Academy, Series B 93 (9): 525–546. doi:10.2183/pjab.93.034.
  • Gotoh, H., and T. Sakai. 2006. “Key Issues in the Particle Method for Computation of Wave Breaking.” Coastal Engineering 53 (2): 171–179. doi:10.1016/j.coastaleng.2005.10.007.
  • Gotoh, H., T. Shibahara, and T. Sakai. 2001. “Sub-Particle-Scale Turbulence Model for the MPS Method-Lagrangian Flow Model for Hydraulic Engineering.” Computational Fluid Dynamics Journal 9 (4): 339–347.
  • Gui, Q., P. Dong, S. Shao, and Y. Chen. 2015. “Incompressible SPH Simulation of Wave Interaction with Porous Structure.” Ocean Engineering 110: 126–139. doi:10.1016/j.oceaneng.2015.10.013.
  • Harada, E., H. Gotoh, H. Ikari, and A. Khayyer. 2017. “Numerical Simulation for Sediment Transport Using MPS-DEM Coupling Model.” Advances in Water Resources in press. doi:10.1016/j.advwatres.2017.08.007.
  • Harada, E., H. Ikari, Y. Shimizu, A. Khayyer, and H. Gotoh. 2018. “Numerical Investigation of the Morphological Dynamics of a Step and Pool Riverbed Using DEM-MPS.” Journal of Hydraulic Engineering 144 (1): 04017058. doi:10.1061/(ASCE)HY.1943-7900.0001392.
  • Hérault, A., G. Billotta, and R. A. Dalrymple. 2010. “SPH on GPU with CUDA.” Journal of Hydraulic Research 48: 74–79. doi:10.1080/00221686.2010.9641247.
  • Hori, C., H. Gotoh, H. Ikari, and A. Khayyer. 2011. “GPU-acceleration for Moving Particle Semi-Implicit Method.” Computers and Fluids 51 (1): 174–183. doi:10.1016/j.compfluid.2011.08.004.
  • Hu, F., T. Matsunaga, T. Tamai, and S. Koshizuka. 2017a. “An ALE Particle Method Using Upwind Interpolation.” Computers and Fluids 145: 21–36. doi:10.1016/j.compfluid.2016.12.011.
  • Hu, W., W. Pan, M. Rakhsha, Q. Tian, H. Hu, and D. Negrut. 2017b. “A Consistent Multi Resolution Smoothed Particle Hydrodynamics Method.” Computer Methods in Applied Mechanics and Engineering 324: 278–299. doi:10.1016/j.cma.2017.06.010.
  • Hwang, S. C., A. Khayyer, H. Gotoh, and J. C. Park. 2014. “Development of a Fully Lagrangian MPS-based Coupled Method for Simulation of Fluid-Structure Interaction Problems.” Journal of Fluids and Structures 50: 497–511. doi:10.1016/j.jfluidstructs.2014.07.007.
  • Ikari, H., H. Gotoh, and T. Arai. 2010. “Fluid-Elastoplastic Hybrid Model for Computational Mechanics of Wave-Induced Sea Cliff Erosion.” Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 66 (1): 916–920. (in Japanese). doi:10.2208/kaigan.66.916.
  • Ikari, H., H. Gotoh, T. Tanbo, and T. Ejiri. 2015. “MPS-based Simulation of Scouring Due to Submerged Vertical Jet with Sub-Particle-Scale Suspended Sediment Model.” Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 71: 19–24. (in Japanese). doi:10.2208/kaigan.71.I_19.
  • Ikari, H., H. Gotoh, N. Tsuruta, and Y. Kobayashi. 2017. “Wave Overtopping Analysis on Wave Absorbing Seawall Using Improved Multi-Resolution MPS Method.” Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 73 (2): 19–24. (in Japanese). doi:10.2208/kaigan.73.I_19.
  • Inutsuka, S. 2002. “Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver.” Journal of Computational Physics 179: 238–267. doi:10.1006/jcph.2002.7053.
  • Issa, R., D. Violeau, E. S. Lee, and H. Flament. 2010. “Modelling Nonlinear Water Waves with RANS and LES SPH Models.” In Advances in Numerical Simulation of Nonlinear Water Waves, edited by Q. W. Ma, Vol. 11 vols. World Scientific. ch. 14. Singapore: World Scientific Publishing Co.
  • Jian, W., D. Liang, S. Shao, R. Chen, and K. Yang. 2016. “Smoothed Particle Hydrodynamics Simulations of Dam-Break Flows around Movable Structures.” International Journal of Offshore and Polar Engineering 26 (1): 33–40. doi:10.17736/10535381.
  • Kakuda, K., T. Nagashima, Y. Hayashi, S. Obara, J. Toyotani, S. Miura, and S. Matsuda. 2013. “Three-Dimensional Fluid Flow Simulations Using GPU-based Particle Method.” Computer Modeling in Engineering & Sciences 93 (5): 363–376.
  • Kazemi, E., A. Nichols, S. Tait, and S. Shao. 2017. “SPH Modelling of Depth-Limited Turbulent Open Channel Flows over Rough Boundaries.” International Journal for Numerical Methods in Fluids 83: 3–27. doi:10.1002/fld.v83.1.
  • Khayyer, A., and H. Gotoh. 2016. “A Multiphase Compressible-Incompressible Particle Method for Water Slamming.” International Journal of Offshore and Polar Engineering 26 (1): 20–25. doi:10.17736/10535381.
  • Khayyer, A., H. Gotoh, H. Falahaty, Y. Shimizu, and Y. Nishijima. 2017d. “Towards Development of a Reliable fully-Lagrangian MPS-based FSI Solver for Simulation of 2D Hydroelastic Slamming.” Ocean Systems Engineering 7 (3): 299–318.
  • Khayyer, A., H. Gotoh, and Y. Shimizu. 2017a. “Comparative Study on Accuracy and Conservation Properties of Two Particle Regularization Schemes and Proposal of an Optimized Particle Shifting Scheme in ISPH Context.” Journal of Computational Physics 332: 236–256. doi:10.1016/j.jcp.2016.12.005.
  • Khayyer, A., H. Gotoh, Y. Shimizu, and H. Falahaty. 2017e. “An Enhanced ISPH-SPH Coupled Method for Incompressible Fluid-Elastic Structure Interactions.” Advances of Smoothed Particle Hydrodynamics: the Proceedings of the 2017 SPHERIC Beijing International Workshop, 23–29. Mason, OH: Scietech Publisher.
  • Khayyer, A., H. Gotoh, Y. Shimizu, and K. Gotoh. 2017b. “On Enhancement of Energy Conservation Properties of Projection-Based Particle Methods.” European Journal of Mechanics B/Fluids 66: 20–37. doi:10.1016/j.euromechflu.2017.01.014.
  • Khayyer, A., H. Gotoh, Y. Shimizu, K. Gotoh, and S. Shao. 2017c. “An Enhanced Particle Method for Simulation of Fluid Flow Interactions with Saturated Porous Media.” Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 73 (2): 841–846. doi:10.2208/kaigan.73.I_841.
  • Koshizuka, S. 2011. “Current Achievements and Future Perspectives on Particle Simulation Technologies for fluid Dynamics and Heat Transfer.” Journal of Nuclear Science and Technology 48 (2): 155–168. doi:10.1080/18811248.2011.9711690.
  • Koshizuka, S., and Y. Oka. 1996. “Moving Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid.” Nuclear Science and Engineering 123: 421–434. doi:10.13182/NSE96-A24205.
  • Le Touzé, D., A. Colagrossi, G. Colicchio, and M. Greco. 2013. “A Critical Investigation of Smoothed Particle Hydrodynamics Applied to Problems with Free Surfaces.” International Journal for Numerical Methods in Fluids 73: 660–691.
  • Le Touzé, D., A. Marsh, G. Oger, P. M. Guilcher, C. Khaddaj-Mallat, B. Alessandrini, and P. Ferrant. 2010. “SPH Simulation of Green Water and Ship Flooding Scenarios.” Journal of Hydrodynamics, Series B 22 (5): 231–236. doi:10.1016/S1001-6058(09)60199-2.
  • Lee, E. S., C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. K. Stansby. 2008. “Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method.” Journal of Computational Physics 227 (18): 8417–8436. doi:10.1016/j.jcp.2008.06.005.
  • Leroy, A., D. Violeau, M. Ferrand, and A. Joly. 2015. “Buoyancy Modelling with Incompressible SPH for Laminar and Turbulent Flows.” International Journal for Numerical Methods in Fluids 78 (8): 455–474. doi:10.1002/fld.v78.8.
  • Li, J., X. Liu, K. Gong, S. K. Tan, and S. Shao. 2012. “SPH Modeling of Solitary Wave Fissions over Uneven Bottoms.” Coastal Engineering 60: 261–275. doi:10.1016/j.coastaleng.2011.10.006.
  • Liang, D., W. Jian, S. Shao, R. Chen, and K. Yang. 2017. “Incompressible SPH Simulation of Solitary Wave Interaction with Movable Seawalls.” Journal of Fluids and Structures 69: 72–88. doi:10.1016/j.jfluidstructs.2016.11.015.
  • Lind, S. J., Q. Fang, P. K. Stansby, B. D. Rogers, and G. Fourtakas. 2017. “A Two-Phase Incompressible-Compressible (Water-Air) Smoothed Particle Hydrodynamics (ICSPH) Method Applied to Focused Wave Slam on Decks.” Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference (ISOPE), San Francisco, CA, USA, June 25–30.
  • Lind, S. J., and P. K. Stansby. 2015. “Investigations into Higher Order Incompressible SPH.” Proceedings of 10th SPHERIC Int. Workshop, Parma, Italy, 131–138.
  • Lind, S. J., and P. K. Stansby. 2016. “High-Order Eulerian Incompressible Smoothed Particle Hydrodynamics with Transition to Lagrangian Free-Surface Motion.” Journal of Computational Physics 326: 290–311. doi:10.1016/j.jcp.2016.08.047.
  • Lind, S. J., P. K. Stansby, and B. D. Rogers. 2016a. “Fixed and Moored Bodies in Steep and Breaking Waves Using SPH with the Froude–Krylov Approximation.” Journal of Ocean Engineering and Marine Energy 2: 331–354. doi:10.1007/s40722-016-0056-4.
  • Lind, S. J., P. K. Stansby, and B. D. Rogers. 2016b. “Incompressible–Compressible Flows with a Transient Discontinuous Interface Using Smoothed Particle Hydrodynamics (SPH).” Journal of Computational Physics 309: 129–147. doi:10.1016/j.jcp.2015.12.005.
  • Lind, S. J., P. K. Stansby, B. D. Rogers, and P. M. Lloyd. 2015. “Numerical Predictions of Water-Air Wave Slam Using Incompressible-Compressible Smoothed Particle Hydrodynamics.” Applied Ocean Research 49: 57–71. doi:10.1016/j.apor.2014.11.001.
  • Lind, S. J., R. Xu, P. K. Stansby, and B. D. Rogers. 2012. “Incompressible Smoothed Particle Hydrodynamics for Free-Surface Flows: A Generalised Diffusion-Based Algorithm for Stability and Validations for Impulsive Flows and Propagating Waves.” Journal of Computational Physics 231 (4): 1499–1523. doi:10.1016/j.jcp.2011.10.027.
  • Litvinov, S., X. Y. Hu, and N. A. Adams. 2015. “Towards Consistence and Convergence of Conservative SPH Approximations.” Journal of Computational Physics 301: 394–401. doi:10.1016/j.jcp.2015.08.041.
  • Liu, M. B., and G. R. Liu. 2015. Particle Methods for Multi-Scale and Multi-Physics. 376. Singapore: World Scientific Publishing Co. ISBN 978-9814571692.
  • Ma, H., N. Mizutani, S. Eguchi, and D. Hur. 2004. “Study on Beach Profile Change and Wave Induced Velocity Field in Permeable Beach.” Proceedings of Civil Engineering in Ocean 20: 509–514. (in Japanese). doi:10.2208/prooe.20.509.
  • Makris, C. V., C. D. Memos, and Y. N. Kresteniti. 2016. “Numerical Modeling of Surfzone Dynamics under Weakly Plunging Breakers with SPH Method.” Ocean Modelling 98: 12–35. doi:10.1016/j.ocemod.2015.12.001.
  • Marrone, S., M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, and G. Graziani. 2011. “δ-SPH Model for Simulating Violent Impact Flows.” Computer Methods in Applied Mechanics and Engineering 200: 1526–1542. doi:10.1016/j.cma.2010.12.016.
  • Marrone, S., B. Bouscasse, A. Colagrossi, and M. Antuono. 2012. “Study of Ship Wave Breaking Patterns Using 3D Parallel SPH Simulations.” Computers & Fluids 69: 54–66. doi:10.1016/j.compfluid.2012.08.008.
  • Marrone, S., A. Colagrossi, A. Di-Mascio, and D. Le Touzé. 2015. “Prediction of Energy Losses in Water Impacts Using Incompressible and Weakly Compressible Models.” Journal of Fluids and Structures 54: 802–822. doi:10.1016/j.jfluidstructs.2015.01.014.
  • Marrone, S., A. Colagrossi, J. S. Park, and E. F. Campana. 2017. “Challenges on the Numerical Prediction of Slamming Loads on LNG Tank Insulation Panels.” Ocean Engineering 141: 512–530. doi:10.1016/j.oceaneng.2017.06.041.
  • Marrone, S., A. Di Mascio, and D. Le Touzé. 2016. “Coupling of Smoothed Particle Hydrodynamics with Finite Volume Method for Free-Surface Flows.” Journal of Computational Physics 310: 161–180. doi:10.1016/j.jcp.2015.11.059.
  • Mayrhofer, A., D. Laurence, B. D. Rogers, and D. Violeau. 2015. “DNS and LES of 3-D Wall-Bounded Turbulence Using Smoothed Particle Hydrodynamics.” Computers & Fluids 115: 86–97. doi:10.1016/j.compfluid.2015.03.029.
  • Meringolo, D. D., A. Colagrossi, S. Marrone, and F. Aristodemo. 2017. “On the Filtering of Acoustic Components in Weakly-Compressible SPH Simulations.” Journal of Fluids and Structures 70: 1–23. doi:10.1016/j.jfluidstructs.2017.01.005.
  • Mokos, A., B. D. Rogers, and P. K. Stansby. 2017. “A Multi-Phase Particle Shifting Algorithm for SPH Simulations of Violent Hydrodynamics with A Large Number of Particles.” Journal of Hydraulic Research 55 (2): 143–162. doi:10.1080/00221686.2016.1212944.
  • Monaghan, J. J. 2012. “Smoothed Particle Hydrodynamics and Its Diverse Applications.” Annual Review of Fluid Mechanics 44 (1): 323–346. doi:10.1146/annurev-fluid-120710-101220.
  • Monaghan, J. J., and A. Rafiee. 2013. “A Simple SPH Algorithm for Multi-Fluid Flow with High Density Ratios.” International Journal for Numerical Methods in Fluids 71: 537–561. doi:10.1002/fld.3671.
  • Mori, N., and S. Kakuno. 2008. “Aeration and Bubble Measurements of Coastal Breaking Waves.” Fluid Dynamics Research 40 (7–8): 616–626. doi:10.1016/j.fluiddyn.2007.12.013.
  • Oger, G., P. M. Guilcher, E. Jacquin, L. Brosset, J. B. Deuff, and D. Le Touzé. 2010. “Simulations of Hydro-Elastic Impacts Using a Parallel SPH Model.” International Journal of Offshore and Polar Engineering 20 (3): 181–189.
  • Oger, G., D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J. G. Piccinali. 2016a. “On Distributed Memory MPI-based Parallelization of SPH Codes in Massive HPC Context.” Computer Physics Communications 200: 1–14. doi:10.1016/j.cpc.2015.08.021.
  • Oger, G., S. Marrone, D. Le Touzé, and M. de Leffe. 2016b. “SPH Accuracy Improvement through the Combination of a quasi-Lagrangian Shifting Transport Velocity and Consistent ALE Formalisms.” Journal of Computational Physics 313: 76–98. doi:10.1016/j.jcp.2016.02.039.
  • Ovaysi, S., and M. Piri. 2012. “Multi-GPU Acceleration of Direct Pore-Scale Modeling of Fluid Flow in Natural Porous Media.” Computer Physics Communications 183: 1890–1898. doi:10.1016/j.cpc.2012.04.007.
  • Peng, C., G. Xu, W. Wu, H. Yu, and C. Wang. 2017. “Multiphase SPH Modeling of Free Surface Flow in Porous Media with Variable Porosity.” Computers and Geotechnics 81: 239–248. doi:10.1016/j.compgeo.2016.08.022.
  • Qiu, L. C. 2014. “OpenCL-based GPU Acceleration of ISPH Simulation for Incompressible Flows.” In Applied Mechanics and Materials 444: 380–384.
  • Rafiee, A., S. Cummins, M. Rudman, and K. Thiagarajan. 2012. “Comparative Study on the Accuracy and Stability of SPH Schemes in Simulating Energetic Free-Surface Flows.” European Journal of Mechanics - B/Fluids 36: 1–16. doi:10.1016/j.euromechflu.2012.05.001.
  • Rafiee, A., and K. P. Thiagarajan. 2009. “An SPH Projection Method for Simulating Fluid-Hypoelastic Structure Interaction.” Computer Methods in Application Mechanics and Engineering 198: 2785–2795. doi:10.1016/j.cma.2009.04.001.
  • Ran, Q., J. Tong, S. Shao, X. Fu, and Y. Xu. 2015. “Incompressible SPH Scour Model for Movable Bed Dam Break Flows.” Advances in Water Resources 82: 39–50. doi:10.1016/j.advwatres.2015.04.009.
  • Razavitoosi, S. L., S. A. Ayyoubzadeh, and A. Valizadeh. 2014. “Two-Phase SPH Modelling of Waves Caused by Dam Break over a Movable Bed.” International Journal of Sediment Research 29 (3): 344–356. doi:10.1016/S1001-6279(14)60049-4.
  • Ren, B., M. He, P. Dong, and H. Wen. 2015. “Nonlinear Simulations of Wave-Induced Motions of a Freely Floating Body Using WCSPH Method.” Applied Ocean Research 50: 1–12. doi:10.1016/j.apor.2014.12.003.
  • Ren, B., M. He, Y. Li, and P. Dong. 2017. “Application of Smoothed Particle Hydrodynamics for Modeling the Wave-Moored Floating Breakwater Interaction.” Applied Ocean Research 67: 277–290. doi:10.1016/j.apor.2017.07.011.
  • Ren, B., Z. Jin, R. Gao, Y. X. Wang, and Z. L. Xu. 2013. “SPH-DEM Modeling of the Hydraulic Stability of 2D Blocks on a Slope.” Journal of Waterway, Port, Coastal, and Ocean Engineering 140 (6): 04014022.1–04014022.12.
  • Ren, B., H. Wen, P. Dong, and Y. Wang. 2014. “Numerical Simulation of Wave Interaction with Porous Structures Using an Improved Smoothed Particle Hydrodynamic Method.” Coastal Engineering 88: 88–100. doi:10.1016/j.coastaleng.2014.02.006.
  • Shadloo, M. S., G. Oger, and D. Le Touzé. 2016. “Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges.” Computers & Fluids 136: 11–34. doi:10.1016/j.compfluid.2016.05.029.
  • Shadloo, M. S., R. Weiss, M. Yildiz, and R. A. Dalrymple. 2015. “Numerical Simulation of Long Wave Runup for Breaking and Nonbreaking Waves.” International Journal of Offshore and Polar Engineering 25 (1): 1–7.
  • Shao, S. 2010. “Incompressible SPH Flow Model for Wave Interactions with Porous Media.” Coastal Engineering 57: 304–316. doi:10.1016/j.coastaleng.2009.10.012.
  • Shao, S., C. Ji, D. I. Graham, D. E. Reeve, P. W. James, and A. J. Chadwick. 2006. “Simulation of Wave Overtopping by an Incompressible SPH Model.” Coastal Engineering 53 (9): 723–735. doi:10.1016/j.coastaleng.2006.02.005.
  • Shao, S., and E. Y. M. Lo. 2003. “Incompressible SPH Method for Simulating Newtonian and non-Newtonian Flows with a Free Surface.” Advances in Water Resources 26: 787–800. doi:10.1016/S0309-1708(03)00030-7.
  • Shi, H., X. Yu, and R. A. Dalrymple. 2017. “Development of a Two-Phase SPH Model for Sediment Laden Flows.” Computer Physics Communications 221: 259–272. doi:10.1016/j.cpc.2017.08.024.
  • Shi, Y., S. Li, H. Chen, M. He, and S. Shao. 2018. “Improved SPH Simulation of Spilled Oil Contained by Flexible Floating Boom under Wave–Current Coupling Condition.” Journal of Fluids and Structures 76: 272–300. doi:10.1016/j.jfluidstructs.2017.09.014.
  • Shibata, K., S. Koshizuka, T. Matsunaga, and I. Masaie. 2017. “The Overlapping Particle Technique for Multi-Resolution Simulation of Particle Methods.” Computer Methods in Applied Mechanics and Engineering 325: 434–464. doi:10.1016/j.cma.2017.06.030.
  • Stagonas, D., D. Warbrick, G. Muller, and D. Magagna. 2011. “Surface Tension Effects on Energy Dissipation by Small Scale, Experimental Breaking Waves.” Coastal Engineering 58: 826–836. doi:10.1016/j.coastaleng.2011.05.009.
  • Sun, P. N., A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang. 2018. “Multi-Resolution δplus−SPH with Tensile Instability Control: Towards High Reynolds Number Flows.” Computer Physics Communications in press. doi:10.1016/j.cpc.2017.11.016.
  • Sun, P. N., A. Colagrossi, S. Marrone, and A. M. Zhang. 2017. “The δplus-SPH Model: Simple Procedures for a Further Improvement of the SPH Scheme.” Computer Methods in Applied Mechanics and Engineering 315: 25–49. doi:10.1016/j.cma.2016.10.028.
  • Sun, X., M. Sakai, and Y. Yamada. 2013. “Three-Dimensional Simulation of a Solid–Liquid Flow by the DEM–SPH Method.” Journal of Computational Physics 248: 147–176. doi:10.1016/j.jcp.2013.04.019.
  • Tang, Z., D. Wan, G. Chen, and Q. Xiao. 2016. “Numerical Simulation of 3D Violent Free-Surface Flows by Multi-Resolution MPS Method.” Journal of Ocean Engineering and Marine Energy 2 (3): 355–364. doi:10.1007/s40722-016-0062-6.
  • Tayebi, A., and Y. C. Jin. 2015. “Development of Moving Particle Explicit (MPE) Method for Incompressible Flows.” Computers & Fluids 117: 1–10. doi:10.1016/j.compfluid.2015.04.025.
  • Tsuruta, N., A. Khayyer, and H. Gotoh. 2013. “A Short Note on Dynamic Stabilization of Moving Particle Semi-Implicit Method.” Computers & Fluids 82: 158–164. doi:10.1016/j.compfluid.2013.05.001.
  • Tsuruta, N., A. Khayyer, and H. Gotoh. 2015. “Space Potential Particles to Enhance the Stability of Projection-Based Particle Methods.” International Journal of Computational Fluid Dynamics 29 (1): 100–119. doi:10.1080/10618562.2015.1006130.
  • Tsuruta, N., A. Khayyer, and H. Gotoh. 2016. “A Novel Refinement Technique for Projection-Based Particle Methods.” Proceedings of SPHERIC 2016, 11th international SPHERIC workshop, Munich, Germany, June 13–16.
  • Vacondio, R., B. D. Rogers, P. K. Stansby, and P. Mignosa. 2016. “Variable Resolution for SPH in Three Dimensions: Towards Optimal Splitting and Coalescing for Dynamic Adaptivity.” Computer Methods in Applied Mechanics and Engineering 300: 442–460. doi:10.1016/j.cma.2015.11.021.
  • Vacondio, R., B. D. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman. 2013. “Variable Resolution for SPH: A Dynamic Particle Coalescing and Splitting Scheme.” Computer Methods in Applied Mechanics and Engineering 256: 132–148. doi:10.1016/j.cma.2012.12.014.
  • Violeau, D. 2012. Fluid Mechanics and the SPH Method, Theory and Applications. Oxford: Oxford University press. ISBN 978-0-19-965552-6.
  • Violeau, D., C. Buvat, K. Abed-Meraim, and E. de Nanteuil. 2007. “Numerical Modelling of Boom and Oil Spill with SPH.” Coastal Engineering 54 (12): 895–913. doi:10.1016/j.coastaleng.2007.06.001.
  • Violeau, D., and R. Issa. 2007. “Numerical Modelling of Complex Turbulent Free-Surface Flows with the SPH Method: An Overview.” International Journal for Numerical Methods in Fluids 53: 277–304. doi:10.1002/(ISSN)1097-0363.
  • Violeau, D., and B. D. Rogers. 2016. “Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future.” Journal of Hydraulic Research 54 (1): 1–26. doi:10.1080/00221686.2015.1119209.
  • Wang, D., S. Li, T. Arikawa, and H. Gen. 2016. “ISPH Simulation of Scour behind Seawall Due to Continuous Tsunami Overflow.” Coastal Engineering Journal 58 (3): 1650014. doi:10.1142/S0578563416500145.
  • Wei, Z., R. A. Dalrymple, A. Hérault, G. Bilotta, E. Rustico, and H. Yeh. 2015. “SPH Modeling of Dynamic Impact of Tsunami Bore on Bridge Piers.” Coastal Engineering 104: 26–42. doi:10.1016/j.coastaleng.2015.06.008.
  • Wen, H., B. Ren, P. Dong, and Y. Wang. 2016. “A SPH Numerical Wave Basin for Modeling Wave-Structure Interactions.” Applied Ocean Research 59: 366–377. doi:10.1016/j.apor.2016.06.012.
  • Xiong, Q., B. Li, and J. Xu. 2013. “GPU-accelerated Adaptive Particle Splitting and Merging in SPH.” Computer Physics Communications 184: 1701–1707. doi:10.1016/j.cpc.2013.02.021.
  • Xu, H., and P. Lin. 2017. “A New Two-Step Projection Method in an ISPH Model for Free Surface Flow Computations.” Coastal Engineering 127: 68–79. doi:10.1016/j.coastaleng.2017.06.006.
  • Xu, R. 2010 “An Improved Incompressible Smoothed Particle Hydrodynamics Method and Its Application in Free-Surface Simulations.” Ph.D Thesis, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, United Kingdom.
  • Xu, R., P. K. Stansby, and D. Laurence. 2009. “Accuracy and Stability in Incompressible SPH (ISPH) Based on the Projection Method and a New Approach.” Journal of Computational Physics 228 (18): 6703–6725. doi:10.1016/j.jcp.2009.05.032.
  • Yeganeh-Bakhtiary, A., H. Houshangi, F. Hajivalie, and S. Abolfathi. 2017. “A Numerical Study on Hydrodynamics of Standing Waves in Front of Caisson Breakwaters with WCSPH Model.” Coastal Engineering Journal 59 (1): 1750005. doi:10.1142/S057856341750005X.
  • Zhang, C., X. Y. Hu, and N. A. Adams. 2017. “A Weakly Compressible SPH Method Based on A Low-Dissipation Riemann Solver.” Journal of Computational Physics 335: 605–620. doi:10.1016/j.jcp.2017.01.027.
  • Zheng, X., X. Lv, Q. Ma, W. Duan, A. Khayyer, and S. Shao. 2017b. “An Improved Solid Boundary Treatment for Wave–Float Interactions Using ISPH Method.” International Journal of Naval Architecture and Ocean Engineering in press. doi:10.1016/j.ijnaoe.2017.08.001.
  • Zheng, X., Q. W. Ma, and W. Y. Duan. 2014. “Comparative Study of Different SPH Schemes on Simulating Violent Water Wave Impact Flows.” China Ocean Engineering 6 (28): 791–806. doi:10.1007/s13344-014-0061-0.
  • Zheng, X., S. Shao, A. Khayyer, W. Duan, Q. Ma, and K. Liao. 2017a. “Corrected First-Order Derivative ISPH in Water Wave Simulations.” Coastal Engineering Journal 59 (1): 1750010. doi:10.1142/S0578563417500103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.