241
Views
4
CrossRef citations to date
0
Altmetric
Original Research Paper

Numerical modeling of ship wave generation using Green’s functions based on linear dispersive wave theory

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 317-335 | Received 24 Jul 2019, Accepted 10 Apr 2020, Published online: 07 May 2020

References

  • Bertram, V. 2000. Practical Ship Hydrodynamics. Oxford, UK: Butterworth-Heinemann.
  • Chen, X. N., and S. D. Sharma. 1995. “A Slender Ship Moving at A Near-critical Speed in A Shallow Channel.” Journal of Fluid Mechanics 291: 263–285. doi:10.1017/S0022112095002692.
  • David, C. G., V. Roeber, N. Goseberg, and T. Schlurmann. 2017. “Generation and Propagation of Ship-borne Waves - Solutions from a Boussinesq-type Model.” Coastal Engineering 127: 170–187. doi:10.1016/j.coastaleng.2017.07.001.
  • Dias, F. 2014. “Shi Waves and Kelvin.” Journal of Fluid Mechanics 746: 1–4. doi:10.1017/jfm.2014.69.
  • Ertekin, R. C., W. C. Webster, and J. V. Wehausen. 1984. “Ship-generated Solitons.” Proceedings of 15th Symposium on Naval Hydrodynamics, 347–364, Hamburg.
  • Gharbi, S., G. Valkov, S. Hamdi, and I. Nistor. 2010. “Numerical and Field Study of Ship-induced Waves along the St. Lawrence Waterway, Canada.” Natural Hazards 54 (3): 605–621. doi:10.1007/s11069-009-9489-6.
  • Graff, W., A. Kracht, and G. Weinblum. 1964. “Some Extension of D. W. Taylor’s Standard Series.” Transactions of Society of Naval Architects and Marine Engineers 72: 374–401.
  • Han, G., Z. Ma, N. Chen, J. Yang, and D. Chen. 2017. “Hurricane Isaac Storm Surges off Florida Observed by Jason-1 and Jason-2 Satellite Altimeters.” Remote Sensing of Environment 198: 244–253. doi:10.1016/j.rse.2017.06.005.
  • Havelock, T. H. 1908. “The Propagation of Groups of Waves in Dispersive Media, with Application to Waves on Water Produced by a Travelling Disturbance.” Proceedings Royal Society of London Series A 398–430. doi:10.1098/rspa.1908.0097.
  • Higuchi, N., and K. Hirayama. 2017. “Modeling of Ship Wave Generation Based on Lewis-form and Introduction to Boussinesq-type Wave Transformation Model.” Journal of JSCE, Ser. B2 (Coastal Engineering) 73 (2): I_37-I_42. doi:10.2208/kaigan.73.I_37.
  • Higuchi, N., K. Hirayama, and J. Naganuma. 2018. “Model Experiment of Ship Wave in Horizontal Shallow Basin and Reproduction by Expanded Ship Wave Generation Model.” Journal of JSCE, Ser. B2 (Coastal Engineering) 74 (2): I_7-I_12. doi:10.2208/kaigan.74.I_7.
  • Itao, K., K. Matsuyama, H. Shibaki, Y. Ito, and Y. Uno. 2015. “Study on Ship Wave and Its Influence in Nagoya Port.” Journal of JSCE, Ser. B2 (Coastal Engineering) 71 (2): I_475-I_480. doi:10.2208/kaigan.71.I_475.
  • Jackson, D. D. 1979. “The Use of a Priori Data to Resolve Non-uniqueness in Linear Inversion.” Geophysical Journal International 57: 137–157. doi:10.1111/j.1365-246X.1979.tb03777.x.
  • Larson, M., B. Almström, G. Göransson, H. Hanson, and P. Danielsson. 2017. “Sediment Movement Induced by Ship-Generated Waves in Restricted Waterways.” Coastal Dynamics 120: 300–311.
  • Li, Y., and P. D. Sclavounos. 2002. “Three-dimensional Nonlinear Solitary Waves in Shallow Water Generated by an Advancing Disturbance.” Journal of Fluid Mechanics 470: 383–410. doi:10.1017/S0022112002001568.
  • Madsen, P. A., and Sørensen. 1992. “A New Form of Boussinesq Equations with Improved Linear Dispersion Characteristics. Part 2. A Slowly-varying Bathymetry.” Coastal Engineering 18: 183–204. doi:10.1016/0378-3839(92)90019-Q.
  • Nascimento, M. F., C. F. Neves, and G. Maciel 2009. “Propagation of Ship Waves on a Sloping Bottom.” Conference: Coastal Engineering 2008. doi: 10.1142/9789814277426_0059.
  • Nascimento, M. F., C. F. Neves, and G. Maciel. 2011. “Waves Generated by Two or More Ships in a Channel.” Coastal Engineering Proceedings 1 (32): 60. doi:10.9753/icce.v32.waves.60.
  • Nwogu, O. 1993. “Alternative Form of Boussinesq Equations for Nearshore Wave Propagation.” Journal of Waterway, Port, Coastal, and Ocean Engineering 119 (6): 618–638. doi:10.1061/(ASCE)0733-950X(1993)119:6(618).
  • Saito, T., Y. Ito, D. Inazu, and R. Hino. 2011. “Tsunami Source of the 2011 Tohoku-Oki Earthquake, Japan: Inversion Analysis Based on Dispersive Tsunami Simulations.” Geophysical Research Letters 38: L00G19. doi:10.1029/2011GL049089.
  • Satake, K. 1987. “Inversion of Tsunami Waveforms for the Estimation of a Fault Heterogeneity: Method and Numerical Experiments.” Journal of Physics of the Earth 35 (3): 241–254. doi:10.4294/jpe1952.35.241.
  • Satake, K., Y. Fujii, T. Harada, and Y. Namegaya. 2013. “Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data.” Bulletin of the Seismological Society of America 103 (2B): 1473–1492. doi:10.1785/0120120122.
  • Shi, F., M. Malej, J. M. Smith, and J. T. Kirby. 2018. “Generation and Propagation of Ship-borne Waves - Solutions from a Boussinesq-type Model.” Coastal Engineering 132: 1–12. doi:10.1016/j.coastaleng.2017.11.002.
  • Takagawa, T., and T. Tomita. 2014. “Effects of Rupture Processes in an Inverse Analysis of the Tsunami Source of the 2011 off the Pacific Coast of Tohoku Earthquake.” International Journal of Offshore and Polar Engineering 24 (1): 21–27.
  • Tanimoto, K., H. Kobayashi, and V. T. Ca. 2001. “Ship Waves in a Shallow and Narrow Channel.” Proceedings of 27th Coastal Engineering Conference, 1141–1154, Sydney.
  • Torrence, C., and G. P. Compo. 1998. “A Practical Guide to Wavelet Analysis.” Program in Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  • Tsushima, H., R. Hino, H. Fujimoto, Y. Tanioka, and F. Imamura. 2009. “Near-field Tsunami Forecasting from Cabled Ocean Bottom Pressure Data.” Journal of Geophysical Research: Solid Earth 114: B06309. doi:10.1029/2008JB005988.
  • Yamada, T., H. Shibaki, N. Hamaguchi, K. Yonamine, and K. Shimabukuro. 2015. “Analysis of Ship Waves by Field Observation Data in Ishigaki Port.” Journal of JSCE, Ser. B3 (Ocean Development) 71 (2): I_43-I_48. doi:10.2208/jscejoe.71.I_43.
  • Yamanaka, Y., S. Sato, T. Shimozono, and Y. Tajima. 2019. “A Numerical Study on Nearshore Behavior of Japan Sea Tsunamis Using Green’s Functions for Gaussian Sources Based on Linear Boussinesq Theory.” Coastal Engineering Journal 61 (2): 187–198. doi:10.1080/21664250.2019.1579462.
  • Zheng, P., X. Yu, and M. Isobe. 1998. “A High-order Numerical Model Based on Boussinesq Equation.” Proceedings of Coastal Engineering, JSCE 45: 21–25. doi:10.2208/proce1989.45.21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.