253
Views
6
CrossRef citations to date
0
Altmetric
Original Research Paper

An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 473-488 | Received 18 Jun 2020, Accepted 18 Aug 2020, Published online: 29 Aug 2020

References

  • Angermann, D., J. Klotz, and C. Reigber. 1999. “Space-geodetic estimation of the Nazca-South America Euler vector.” Earth and Planetary Science Letters 171 (3): 329–334. doi:10.1016/S0012-821X(99)00173-9.
  • Aranguiz, R., P. A. Catalán, C. Cecioni, G. Bellotti, P. Henriquez, & J. González. (2019). “Tsunami resonance and spatial pattern of natural oscillation modes with multiple resonators.” Journal of Geophysical Research: Oceans 124: 7797–7816. doi:10.1029/2019JC015206
  • Aránguiz, R., L. Urra, R. Okuwaki, and Y. Yagi. 2018. “Development and application of a tsunami fragility curve of the 2015 tsunami in Coquimbo, Chile.” Natural Hazards and Earth System Sciences 18 (8): 2143–2160. doi:10.5194/nhess-18-2143-2018.
  • Benavente, R., J. Dettmer, P. R. Cummins, and M. Sambridge. 2019. “Efficient Bayesian uncertainty estimation in linear finite fault inversion with positivity constraints by employing a log-normal prior.” Geophysical Journal International 217 (1): 469–484. doi:10.1093/gji/ggz044.
  • Benavente, R., and P. R. Cummins. 2013. “Simple and reliable finite fault solutions for large earthquakes using the W-phase: The Maule (Mw = 8.8) and Tohoku (Mw = 9.0) earthquakes.” Geophysical Research Letters 40 (14): 3591–3595. doi:10.1002/grl.50648.
  • Blaser, L., F. Krueger, M. Ohrnberger, and F. Scherbaum. 2010. “Scaling relations of earthquake source parameter estimates with special focus on subduction environment.” Bulletin of the Seismological Society of America 100: 2914–2926. doi:10.1785/0120100111.
  • Bricker, J. D., S. Gibson, H. Takagi, and F. Imamura. 2015. “On the need for larger Manning’s roughness coefficients in depth-integrated tsunami inundation models.” Coastal Engineering Journal 57 (2): 1550005. doi:10.1142/S0578563415500059.
  • Carmona, J., and M. Jaimes. 2015. “Desigualdad ambiental y desigualdad comunicacional: las portadas de El Mercurio de Valparaíso sobre el derrame de petróleo en la bahía de Quintero.” Cuadernos.info 36: 71–87. doi:10.7764/cdi.36.734.
  • Carvajal, M., and A. Gubler. 2017. “The effects on tsunami hazard assessment in Chile of assuming earthquake scenarios with spatially uniform slip.” In Geist, E. L., Fritz, H. M., Rabinovich, A. B., Tanioka, Y. (eds), Global Tsunami Science: Past and Future, Volume I, 3693–3702. Birkhäuser, Cham: Springer International Publishing. doi:10.1007/978-3-319-55480-8_3.
  • Carvajal, M., M. Cisternas, and P. A. Catalán. 2017. “Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of metropolitan Chile.” Journal of Geophysical Research: Solid Earth 122 (5): 3648–3660.
  • Cisternas, M. 2012. “El Terremoto De 1647 De Chile Central Como Un Evento Intraplaca:¿ Otra Amenaza Para Chile Metropolitano?” Revista De Geografía Norte Grande 53: 23–33. doi:10.4067/S0718-34022012000300002.
  • Cisternas, M., B. F. Atwater, F. Torrejón, Y. Sawai, G. Machuca, M. Lagos, A. Eipert et al. 2005. “Predecessors of the Giant 1960 Chile earthquake.” Nature 437 (7057): 404–407. DOI:10.1038/nature03943.
  • Crempien, J. G. F., A. Urrutia, R. Benavente, and R. Cienfuegos. 2020. “Effects of earthquake spatial slip correlation on variability of tsunami potential energy and intensities.” Scientific Reports 10 (1): 1–10. doi:10.1038/s41598-020-65412-3.
  • De Risi, R., and K. Goda. 2016. “Probabilistic earthquake–tsunami multi- hazard analysis: application to the Tohoku region, Japan.” Frontiers in Built Environment 2: 25. doi:10.3389/fbuil.2016.00025.
  • Delouis, B., J.-M. Nocquet, and V. Martin. 2010. “Slip distribution of the February 27, 2010 Mw= 8.8 Maule earthquake, Central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic Data.” Geophysical Research Letters 37: 17. doi:10.1029/2010GL043899.
  • Dura, T., M. Cisternas, B. P. Horton, L. L. Ely, A. R. Nelson, R. L. Wesson, and J. E. Pilarczyk. 2015. “Coastal evidence for holocene subduction-zone earthquakes and tsunamis in Central Chile.” Quaternary Science Reviews 113: 93–111. doi:10.1016/j.quascirev.2014.10.015.
  • Geist, E. L., and P. J. Lynett. 2014. “Source processes for the probabilistic assessment of tsunami hazards.” Oceanography 27 (2): 86–93. doi:10.5670/oceanog.2014.43.
  • Geist, E. L., and R. Dmowska. 1999. “Local Tsunamis and distributed slip at the source.” In Sauber, J., Dmowska, R. (eds),  Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones, 485–512. Birkhäuser, Basel: Springer. doi:10.1007/978-3-0348-8679-6_6
  • Geist, E. L., and T. Parsons. 2006. “Probabilistic analysis of tsunami hazards.” Natural Hazards 37 (3): 277–314. doi:10.1007/s11069-005-4646-z.
  • Goda, K., and D. R. Raffaele. 2017. “Probabilistic tsunami loss estimation methodology: stochastic earthquake scenario approach.” Earthquake Spectra 33 (4): 1301–1323. doi:10.1193/012617eqs019m.
  • Goda, K., T. Kiyota, R. M. Pokhrel, G. Chiaro, T. Katagiri, K. Sharma, and S. Wilkinson. 2015. “The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey.” Frontiers in Built Environment 1: 8. doi:10.3389/fbuil.2015.00008.
  • Goda, K., T. Yasuda, N. Mori, and T. Maruyama. 2016. “New scaling relationships of earthquake source parameters for stochastic tsunami simulation.” Coastal Engineering Journal 58: 3. doi:10.1142/S0578563416500108.
  • González, F. I., E. L. Geist, B. Jaffe, U. Kânoǧlu, H. Mofjeld, C. E. Synolakis, V. V. Titov et al. 2009. “Probabilistic tsunami hazard assessment at seaside, oregon, for near-and far-field seismic sources.” Journal of Geophysical Research: Oceans 114 (11): 1–19. DOI:10.1029/2008JC005132.
  • González, J., G. González, R. Aránguiz, D. Melgar, M. N. Natalia Zamora, R. D. Shrivastava, P. A. Catalán, and R. Cienfuegos. 2020. “A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile.” Natural Hazards 100 (1): 231–254. doi:10.1007/s11069-019-03809-8.
  • Grezio, A., A. Babeyko, M. A. Baptista, J. Behrens, A. Costa, G. Davies, E. L. Geist et al. 2017. “Probabilistic tsunami hazard analysis: multiple sources and global applications.” Reviews of Geophysics 55 (4): 1158–1198.
  • Grigoriu, M. 2009. “Reduced order models for random functions. Application to stochastic problems.” Applied Mathematical Modelling 33 (1): 161–175. doi:10.1016/j.apm.2007.10.023.
  • Gutenberg, B., and C. F. Richter. 1944. “Frequency of earthquakes in California.” Bulletin of the Seismological Society of America 34 (4): 185–188.
  • Hayes, Gavin P., D. J. Wald, and R. L. Johnson. 2012. “Slab1. 0: a three-dimensional model of global subduction zone geometries.” Journal of Geophysical Research: Solid Earth 117: B1. doi:10.1029/2011JB008524.
  • Hayes, G. P. 2017. “The finite, kinematic rupture properties of great-sized Earth- quakes since 1990.” Earth and Planetary Science Letters 468 (June 2016): 94–100. doi:http://dx.doi.10.1016/j.epsl.2017.04.003.
  • JICA. 2016. Guía para la Estimación de Peligro de Tsunami. Vol. 1. SATREPS Tsunami, Santiago, Chile.
  • Koper, K. D., A. R. Hutko, T. Lay, and O. Sufri. 2012. “Imaging short- period seismic radiation from the 27 february 2010 Chile (MW 8.8) earthquake by back- projection of P, PP, and PKIKP waves.” Journal of Geophysical Research: Solid Earth 117 (2): 1–16. doi:10.1029/2011JB008576.
  • Kramer, S. L. 2014. “Performance-based design methodologies for geotechnical earthquake engineering.” Bulletin of Earthquake Engineering 12 (3): 1049–1070. doi:10.1007/s10518-013-9484-x.
  • Lay, T., C. J. Ammon, H. Kanamori, K. D. Koper, O. Sufri, and A. R. Hutko. 2010. “Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake.” Geophysical Research Letters 37: 13. doi:10.1029/2010GL043379.
  • LeVeque, R. J., K. Waagan, F. I. González, D. Rim, and G. Lin. 2016. “Generating random earthquake events for probabilistic tsunami hazard assessment.” In Geist, E. L., Fritz, H. M., Rabinovich, A. B., Tanioka, Y. (eds), Global Tsunami Science: Past and Future. Volume I, 3671–3692. Birkhäuser, Cham: Springer. doi:10.1007/978-3-319-55480-8_2
  • Li, L., A. D. Switzer, C.‐H. Chan, Y. Wang, R. Weiss, and Q. Qiu. 2016. “How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea.” Journal of Geophysical Research: Solid Earth 121: 6250–6272. doi:10.1002/2016JB013111
  • Lomnitz, C. 1970. “Major earthquakes and tsunamis in chile during the period 1535 to 1955.” Geologische Rundschau 59 (3): 938–960. doi:10.1007/BF02042278.
  • Lomnitz, C. 2004a. “Major earthquakes of Chile: a historical survey, 1535-1960.” Seismological Research Letters 75 (3): 368–378. doi:10.1785/gssrl.75.3.368.
  • Lomnitz, C. 2004b. “Major earthquakes of Chile: a historical survey, 1535-1960.” Seismological Research Letters 75 (3): 368–378.
  • Lorito, S., J. Selva, R. Basili, F. Romano, M. M. Tiberti, and A. Piatanesi. 2014. “Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps.” Geophysical Journal International 200 (1): 574–588. doi:10.1093/gji/ggu408.
  • Mai, P., and G. Beroza. 2000. “Source scaling properties from finite-fault-rupture models.” Bulletin of the Seismological Society of America 90: 604–615. doi:10.1785/0119990126.
  • Mai, P. M., and G. C. Beroza. 2002. “A spatial random field model to characterize complexity in earthquake slip.” Journal of Geophysical Research: Solid Earth 107 (B11): ESE–10. doi:10.1029/2001JB000588.
  • Martínez, C., O. Rojas, P. Villagra, R. Aránguiz, and K. S. Carrillo. 2017. “Risk factors and perceived restoration in a town destroyed by the 2010 Chile tsunami.” Natural Hazards and Earth System Sciences 17 (5): 721–734. doi:10.5194/nhess-17-721-2017.
  • Melgar, D., A. L. Williamson, and E. Fernando Salazar-Monroy. 2019. “Differences between heterogenous and homogenous slip in regional tsunami hazards modelling.” Geophysical Journal International 219 (1): 553–562.
  • Melgar, D., R. J. LeVeque, D. S. Dreger, and R. M. Allen. 2016. “Kinematic rupture scenarios and synthetic displacement data: an example application to the Cascadia subduction zone.” Journal of Geophysical Research: Solid Earth 121 (9): 6658–6674.
  • Melnick, D., B. Bodo, M. R. Strecker, and H. P. Echtler. 2009. “Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco Peninsula, Chile.” Journal of Geophysical Research: Solid Earth 114, B01407. doi:10.1029/2008JB005788
  • Moernaut, J., M. V. Daele, K. Heirman, K. Fontijn, M. Strasser, M. Pino, R. Urrutia, Batist, and M. De. 2014. “Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in South Central Chile.” AGU:Journal of Geophysical Research, Solid Earth 119: 1607–1633.
  • Mori, N., A. Muhammad, K. Goda, T. Yasuda, and A. R. Angulo. 2017. “Probabilistic tsunami hazard analysis of the pacific coast of Mexico: case study based on the 1995 Colima earthquake tsunami.” Frontiers in Built Environment 3: 34. doi:10.3389/fbuil.2017.00034.
  • Mueller, C., W. Power, S. Fraser, and X. Wang. 2014. “Effects of rupture complexity on local tsunami inundation: implications for probabilistic tsunami hazard assessment by example.” Journal of Geophysical Research: Solid Earth 120: 488–502.
  • Muhammad, A., and K. Goda. 2018. “Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation.” Computers & Geosciences 112 (May 2017): 83–100. doi:10.1016/j.cageo.2017.12.009.
  • Nishenko, S. P. 1985. “Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian margins of South America: a quantitative reappraisal.” Journal of Geophysical Research 90 (B5): 3589–3615. doi:10.1029/JB090iB05p03589.
  • Núñez, Ignacio. 2014. “Nuevo peligro sísmico para Chile.” Santiago, Chile: Universidad de Chile, Departamento de Ingeniería Civil, Facultad de Ciencias Físicas y Matemáticas. Available at http://repositorio.uchile.cl/handle/2250/116410
  • Okada, Y. 1985. “Surface Deformation Due to Shear and Tensile Faults in a Half-space.” Bulletin of the Seismological Society of America 75 (4): 1135–1154.
  • Oleskevich, D. A., R. D. Hyndman, and K. Wang. 1999. “The Updip and Downdip Limits to Great Subduction Earthquakes: Thermal and Structural Models of Cascadia, South Alaska, SW Japan, and Chile.” Journal of Geophysical Research 104: 14965–14991. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/1999JB900060.
  • Park, H., and D. T. Cox. 2016. “Probabilistic Assessment of Near- Field Tsunami Hazards: Inundation Depth, Velocity, Momentum Flux, Arrival Time, and Duration Applied to Seaside, Oregon.” Coastal Engineering 117: 79–96. doi:http://dx.doi.10.1016/j.coastaleng.2016.07.011.
  • Poulos, A., M. Monsalve, N. Zamora, and J. C. de la Llera. 2018. “An updated recurrence model for chilean subduction seismicity and statistical validation of its poisson nature.” Bulletin of the Seismological Society of America 109 (1): 66–74. doi:10.1785/0120170160.
  • Ruiz, J. A., M. Fuentes, S. Riquelme, J. Campos, and A. Cisternas. 2015. “Numerical simulation of tsunami runup in Northern Chile based on non-uniform K2 slip distributions.” Natural Hazards 79 (2): 1177–1198. doi:http://dx.doi.10.1007/s11069-015-1901-9.
  • Ruiz, S., and R. Madariaga. 2018. “Historical and recent large megathrust earthquakes in Chile.” Tectonophysics 733 (September 2017): 37–56. doi:10.1016/j.tecto.2018.01.015.
  • Saillard, M., L. Audin, B. Rousset, J. P. Avouac, M. Chlieh, S. R. Hall, L. Husson, and D. L. Farber. 2017. “From the seismic cycle to long-term deformation: linking seismic coupling and quaternary coastal geomorphology along the Andean megathrust.” Tectonics 36 (2): 241–256. doi:10.1002/2016TC004156.
  • Sarkar, S., J. E. Warner, W. Aquino, and M. D. Grigoriu. 2014. “Stochastic reduced order models for uncertainty quantification of intergranular corrosion rates.” Corrosion Science 80: 257–268. doi:10.1016/j.corsci.2013.11.032.
  • Selva, J., R. Tonini, I. Molinari, M. M. Tiberti, F. Romano, A. Grezio, D. Melini, A. Piatanesi, R. Basili, and S. Lorito. 2016. “Quantification of source uncertainties in seismic probabilistic tsunami hazard analysis (SPTHA).” Geophysical Journal International 205 (3): 1780–1803. doi:10.1093/gji/ggw107.
  • Sepúlveda, I., L. Philip, F. Liu, M. Grigoriu, and M. Pritchard. 2017. “Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location.” Journal of Geophysical Research: Solid Earth 122 (9): 7252–7271.
  • Sepúlveda, I., P. L.-F. Liu, and M. Grigoriu. 2019. “Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics.” Journal of Geophysical Research: Solid Earth 124 (1): 658–688. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016620.
  • SHOA. 2015. “Pub. SHOA N◦ 3204: Instrucciones Oceanográficas N◦4, ”Especificaciones Técnicas para la Elaboración de Cartas de Inundación pot Tsunami (CITSU)”.” 1st ed. Servicio Hidrográfico y Oceanográfico de la Armada de Chile. http://www.shoa.cl/s3/datos/descargas/pdf/pub3204old.pdf.
  • Soloviev, S. L., and C. N. Go. 1975. A Catalogue of Tsunamis on the Eastern Shore of the Pacific Ocean. Moscow: Nauka Publishing House.
  • Sørensen, M. B., M. Spada, A. Babeyko, S. Wiemer, and G. Gottfried. 2012. “Probabilistic tsunami hazard in the Mediterranean sea.” Journal of Geophysical Research: Solid Earth 117 (B1). doi:10.1029/2010JB008169.
  • Valdivia, V. 2019. “Mapa probabilístico de inundación por tsunami en el sector Bellavista, Tomé.” Universidad Católica de la Santísima Concepción.
  • Warner, J. E., W. Aquino, and M. D. Grigoriu. 2015. “Stochastic reduced order models for inverse problems under uncertainty.” Computer Methods in Applied Mechanics and Engineering 285: 488–514. doi:10.1016/j.cma.2014.11.021.
  • Weatherall, P., K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, and R. Wigley. 2015. “A new digital bathymetric model of the World’s oceans.” Earth and Space Science 2 (8): 331–345. doi:10.1002/2015EA000107.
  • Yamazaki, Y., T. Lay, K. F. Cheung, H. Yue, and H. Kanamori. 2011. “Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake.” Geophysical Research Letters 38: 7. doi:10.1029/2011GL049130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.