489
Views
33
CrossRef citations to date
0
Altmetric
Original Research Paper

An enhanced multiphase ISPH-based method for accurate modeling of oil spill

ORCID Icon, , &
Pages 625-646 | Received 23 Apr 2020, Accepted 24 Aug 2020, Published online: 03 Nov 2020

References

  • Carswell, C. 2018. “Unique Oil Spill in East China Sea Frustrates Scientists.” Nature 554 (7690): 17–18. doi:10.1038/d41586-018-00976-9.
  • Chorin, A. J. 1968. “Numerical Solution of the Navier-Stokes Equations.” Mathematics of Computation 22 (104): 745–762. doi:10.1090/S0025-5718-1968-0242392-2.
  • Chorin, A. J., and J. E. Marsden. 1993. A Mathematical Introduction to Fluid Mechanics. New York: Springer. ISBN: 978-0387979182. 1993
  • Chow, A. D., B. D. Rogers, S. J. Lind, and P. K. Stansby. 2018. “Incompressible SPH (ISPH) with Fast Poisson Solver on a GPU.” Computer Physics Communications 226: 81–103. doi:10.1016/j.cpc.2018.01.005.
  • Cruz, A. M., and E. Krausmann. 2009. “Hazardous-materials Releases from Offshore Oil and Gas Facilities and Emergency Response following Hurricanes Katrina and Rita.” Journal of Loss Prevention in the Process Industries 22 (1): 59–65. doi:10.1016/j.jlp.2008.08.007.
  • Cruz, A. M., E. Krausmann, and G. Franchello. 2011. “Analysis of Tsunami Impact Scenarios at an Oil Refinery.” Natural Hazards 58 (1): 141–162. doi:10.1007/s11069-010-9655-x.
  • Cummins, S. J., and M. Rudman. 1999. “An SPH Projection Method.” Journal of Computational Physics 152 (2): 584–607. doi:10.1006/jcph.1999.6246.
  • Donzis, D. A., K. Aditya, K. R. Sreenivasan, and P. K. Yeung. 2014. “The Turbulent Schmidt Number.” Journal of Fluids Engineering 58 (6): 060912_1-060912_5. doi:10.1115/1.4026619.
  • Duan, G. T., and B. Chen. 2015. “Large Eddy Simulation by Particle Method Coupled with Sub-particle-scale Model and Application to Mixing Layer Flow.” Applied Mathematical Modelling 39 (10): 3135–3149. doi:10.1016/j.apm.2014.10.058.
  • Duan, G. T., B. Chen, S. Koshizuka, and H. Xiang. 2017b. “Stable Multiphase Moving Particle Semi-implicit Method for Incompressible Interfacial Flow.” Computer Methods in Applied Mechanics and Engineering 318: 636–666. doi:10.1016/j.cma.2017.01.002.
  • Duan, G. T., B. Chen, X. Zhang, and Y. Wang. 2017a. “A Multiphase MPS Solver for Modeling Multi-fluid Interaction with Free Surface and Its Application in Oil Spill.” Computer Methods in Applied Mechanics and Engineering 318: 636–666. doi:10.1016/j.cma.2017.01.002.
  • Duan, G. T., S. Koshizuka, and B. Chen. 2015. “A Contoured Continuum Surface Force Model for Particle Methods.” Journal of Computational Physics 298 (8): 280–304. doi:10.1016/j.jcp.2015.06.004.
  • Duan, G. T., S. Koshizuka, A. Yamaji, B. Chen, X. Li, and T. Tamai. 2018. “An Accurate and Stable Multiphase Moving Particle Semi-implicit Method Based on Corrective Matrix for All Particle Interaction Models.” International Journal for Numerical Methods in Engineering 115 (10): 1287–1314. doi:10.1002/nme.5844.
  • Duan, G. T., A. Yamaji, S. Koshizuka, and B. Chen. 2019. “The Truncation and Stabilization Error in Multiphase Moving Particle Semi-implicit Method Based on Corrective Matrix: Which Is Dominant?” Computers & Fluids 190: 254–273. doi:10.1016/j.compfluid.2019.06.023.
  • Foias, C., O. Manley, R. Rosa, and R. Temam. 2001. Navier–Stokes Equations and Turbulence. ISBN: 978-0511546754. Cambridge: Cambridge University Press.
  • Gingold, R. A., and J. J. Monaghan. 1977. “Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars.” Monthly Notices of the Royal Astronomical Society 181 (3): 375–389. doi:10.1093/mnras/181.3.375.
  • Gotoh, H. 2018. Ryushiho. (in Japanese). ISBN-10: 4627922310. Tokyo: Morikita Shuppan.
  • Gotoh, H., and A. Khayyer. 2018. “On the State-of-the-art of Particle Methods for Coastal and Ocean Engineering.” Coastal Engineering Journal 60 (1): 79–103. doi:10.1080/21664250.2018.1436243.
  • Gotoh, H., and A. Okayasu. 2017. “Computational Wave Dynamics for Innovative Design of Coastal Structures.” Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences 93 (8): 525–546. doi:10.2183/pjab.93.034.
  • Gotoh, H., A. Okayasu, and Y. Watanabe. 2013. Computational Wave Dynamics. ISBN: 978–981–4449–70–0. Singapore: World Scientific Publishing Co. Pte.
  • Gotoh, H., T. Shibahara, and T. Sakai. 2001. “Sub-Particle-Scale Turbulence Model for the MPS Method – Lagrangian Flow Model for Hydraulic Engineering.” Computational Fluid of Dynamic Journal 9 (4): 339–347.
  • Grenier, N., M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini. 2009. “An Hamiltonian Interface SPH Formulation for Multi-fluid and Free Surface Flows.” Journal of Computational Physics 228 (22): 8380–8393. doi:10.1016/j.jcp.2009.08.009.
  • Gualtieri, C., A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser. 2017. “On the Values for the Turbulent Schmidt Number in Environmental Flows.” Fluids 2 (2): 17. doi:10.3390/fluids2020017.
  • Harada, E., H. Ikari, A. Khayyer, and H. Gotoh. 2019. “Numerical Simulation for Swash Morphodynamics by DEM–MPS Coupling Model.” Coastal Engineering Journal 61 (1): 2–14. doi:10.1080/21664250.2018.1554203.
  • Ikari, H., and H. Gotoh. 2018. “Numerical Modeling of Density Currents Using an Incompressible Smoothed Particle Hydrodynamics Method.” Computers & Fluids 167: 372–383. doi:10.1016/j.compfluid.2018.02.036.
  • Jeong, S. M., J. W. Nam, S. C. Hwang, J. C. Park, and M. H. Kim. 2013. “Numerical Prediction of Oil Amount Leaked from a Damaged Tank Using Two-dimensional Moving Particle Simulation Method.” Ocean Engineering 69: 70–78. doi:10.1016/j.oceaneng.2013.05.009.
  • Khayyer, A., and H. Gotoh. 2009. “Modified Moving Particle Semi-implicit Methods for the Prediction of 2D Wave Impact Pressure.” Coastal Engineering 56 (4): 419–440. doi:10.1016/j.coastaleng.2008.10.004.
  • Khayyer, A., and H. Gotoh. 2010. “A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method.” Applied Ocean Research 32 (1): 124–131. doi:10.1016/j.apor.2010.01.001.
  • Khayyer, A., and H. Gotoh. 2011a. “Enhancement of Stability and Accuracy of the Moving Particle Semi-implicit Method.” Journal of Computational Physics 230 (8): 3093–3118. doi:10.1016/j.jcp.2011.01.009.
  • Khayyer, A., and H. Gotoh. 2011b. “Enhancement of Stability and Accuracy of the Moving Particle Semi-implicit Method.” Journal of Computational Physics 230 (8): 3093–3118. doi:10.1016/j.jcp.2011.01.009.
  • Khayyer, A., and H. Gotoh. 2013. “Enhancement of Performance and Stability of MPS Meshfree Particle Method for Multiphase Flows Characterized by High Density Ratios.” Journal of Computational Physics 242: 211–233. doi:10.1016/j.jcp.2013.02.002.
  • Khayyer, A., H. Gotoh, H. Falahaty, and Y. Shimizu. 2018a. “An Enhanced ISPH-SPH Coupled Method for Simulation of Incompressible Fluid-elastic Structure Interactions.” Computer Physics Communications 232: 139–164. doi:10.1016/j.cpc.2018.05.012.
  • Khayyer, A., H. Gotoh, H. Falahaty, Y. Shimizu, and Y. Nishijima. 2017a. “Towards Development of a Reliable fully-Lagrangian MPS-based FSI Solver for Simulation of 2D Hydroelastic Slamming.” Search Results 7: 299–318.
  • Khayyer, A., H. Gotoh, and Y. Shimizu. 2017b. “Comparative Study on Accuracy and Conservation Properties of Two Particle Regularization Schemes and Proposal of an Optimized Particle Shifting Scheme in ISPH Context.” Journal of Computational Physics 69: 236–256. doi:10.1016/j.jcp.2016.12.005.
  • Khayyer, A., H. Gotoh, and Y. Shimizu. 2019. “A Projection-Based Particle Method with Optimized Particle Shifting for Multiphase Flows with Large Density Ratios and Discontinuous Density Fields.” Computers & Fluids 56: 356–371. doi:10.1016/j.compfluid.2018.10.018.
  • Khayyer, A., H. Gotoh, Y. Shimizu, K. Gotoh, H. Falahaty, and S. Shao. 2018b. “Development of a Projection-based SPH Method for Numerical Wave Flume with Porous Media of Variable Porosity.” Coastal Engineering 140: 1–22. doi:10.1016/j.coastaleng.2018.05.003.
  • Khayyer, A., H. Gotoh, and N. Tsuruta. 2014. “A New Surface Tension for Particle Methods with Enhanced Splash Computation.” JJapan Society of Civil Engineers Series B2 (Coastal Engineering) 70 (2): I_26- I_30.
  • Kim, M., U. H. Yim, S. H. Hong, J. H. Jung, H. W. Choi, J. An, J. Won, and W. J. Shim. 2010. “Hebei Spirit Oil Spill Monitored on Site by Fluorometric Detection of Residual Oil in Coastal Waters off Taean, Korea.” Marine Pollution Bulletin 60 (3): 383–389. doi:10.1016/j.marpolbul.2009.10.015.
  • Kim, T. S., K. A. Park, X. Li, M. Lee, S. Hong, S. J. Lyu, and S. Nam. 2015. “Detection of the Hebei Spirit Oil Spill on SAR Imagery and Its Temporal Evolution in a Coastal Region of the Yellow Sea.” Advances in Space Research 56 (6): 1079–1093. doi:10.1016/j.asr.2015.05.040.
  • Kondo, M., S. Koshizuka, K. Suzuki, and M. Takimoto 2007. “Surface Tension Model Using Inter-Particle Force in Particle Method.” Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference 1: 93–98. doi:10.1115/FEDSM2007-37215.
  • Koshizuka, S., and Y. Oka. 1996. “Moving Particle Semi-implicit Method for Fragmentation of Incompressible Fluid.” Nuclear Science and Engineering 123 (3): 421–434. doi:10.13182/NSE96-A24205.
  • Krausmann, E., and A. M. Cruz. 2013. “Impact of the 11 March 2011, Great East Japan Earthquake and Tsunami on the Chemical Industry.” Natural Hazards 67 (2): 811–828. doi:10.1007/s11069-013-0607-0.
  • Kyaw, W. P., M. Sugiyama, Y. Takagi, H. Suzuki, and N. Kato. 2017. “Numerical Analysis of Tsunami-triggered Oil Spill from Industrial Parks in Osaka Bay.” Journal of Loss Prevention in the Process Industries 50: 325–336. doi:10.1016/j.jlp.2017.04.026.
  • Li, C., J. Miller, J. Wang, S. S. Koley, and J. Katz. 2017. “Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks.” Journal of Geophysical Research: Oceans 122 (10): 7938–7957. doi:10.1002/2017JC013193.
  • Lu, J., Z. Yang, H. Wu, W. Wu, J. Deng, and S. Yan. 2018. “Effects of Tank Sloshing on Submerged Oil Leakage from Damaged Tankers.” Ocean Engineering 168: 155–172. doi:10.1016/j.oceaneng.2018.08.015.
  • Lucy, L. B. 1977. “A Numerical Approach to the Testing of Fission Hypothesis.” The Astronomical Journal 82: 1013–1024. doi:10.1086/112164.
  • Maslo, A., J. Panjan, and D. Žagar. 2014. “Large-scale Oil Spill Simulation Using the Lattice Boltzmann Method, Validation on the Lebanon Oil Spill Case.” Marine Pollution Bulletin 84 (1–2): 225–235. doi:10.1016/j.marpolbul.2014.05.008.
  • Mitsch, W. J. 2010. “The 2010 Oil Spill in the Gulf of Mexico: What Would Mother Nature Do?” Ecological Engineering 36 (12): 1607–1610. doi:10.1016/j.ecoleng.2010.08.009.
  • Mokos, A., B. D. Rogers, and P. K. Stansby. 2017. “A Multi-phase Particle Shifting Algorithm for SPH Simulations of Violent Hydrodynamics with A Large Number of Particles.” Journal of Hydraulic Research 55 (2): 143–162. doi:10.1080/00221686.2016.1212944.
  • Nakamura, M., Y. Ikeda, A. Matsumoto, H. Maki, and H. Arakawa. 2018. “Distribution of Hydrocarbons in Seabed Sediments Derived from Tsunami-spilled Oil in Kesennuma Bay, Japan.” Marine Pollution Bulletin 128: 115–125. doi:10.1016/j.marpolbul.2017.12.018.
  • Rezavand, M., M. Taeibi-Rahni, and W. Rauch. 2018. “An ISPH Scheme for Numerical Simulation of Multiphase Flows with Complex Interfaces and High Density Ratios.” Computers & Mathematics with Applications 75 (8): 2658–2677. doi:10.1016/j.camwa.2017.12.034.
  • Rosén, C., and C. Trägrdh. 1995. “Prediction of Turbulent High Schmidt Number Mass Transfer Using a Low Reynolds Number K-ϵ Turbulence Model.” Chemical Engineering Journal 59: 153–159.
  • Shao, S., and E. Y. M. Lo. 2003. “Incompressible SPH Method for Simulating Newtonian and non-Newtonian Flows with a Free Surface.” Advances in Water Resources 26 (7): 787–800. doi:10.1016/S0309-1708(03)00030-7.
  • Shi, Y., S. Li, H. Chen, M. He, and S. Shao. 2018. “Improved SPH Simulation of Spilled Oil Contained by Flexible Floating Boom under Wave–current Coupling Condition.” Journal of Fluids and Structures 76: 272–300. doi:10.1016/j.jfluidstructs.2017.09.014.
  • Shimizu, Y., H. Gotoh, and A. Khayyer. 2018a. “An MPS-based Particle Method for Simulation of Multiphase Flows Characterized by High Density Ratios by Incorporation of Space Potential Particle Concept.” Computers & Mathematics with Applications 76 (5): 1108–1129. doi:10.1016/j.camwa.2018.06.002.
  • Shimizu, Y., A. Khayyer, H. Gotoh, and K. Nagashima. 2018b. “Oil Spill Simulation by Enhanced ISPH Method with SPS Turbulence Model.” JJapan Society of Civil Engineers Series B2 (Coastal Engineering) 74 (2): I_1129-I_1134. (in Japanese).
  • Sun, P. N., M. Luo, D. Le Touzé, and A. M. Zhang. 2019. “The Suction Effect during Freak Wave Slamming on a Fixed Platform Deck: Smoothed Particle Hydrodynamics Simulation and Experimental Study.” Physics of Fluids 31 (11): 117108. doi:10.1063/1.5124613.
  • Tartakovsky, A. M., and P. Meakin. 2005. “Modeling of Surface Tension and Contact Angles with Smoothed Particle Hydrodynamics.” Physical Review E 72 (2): 026301. doi:10.1103/PhysRevE.72.026301.
  • Tartakovsky, A. M., N. Trask, K. Pan, B. Jones, W. Pan, and J. R. Williams. 2016. “Smoothed Particle Hydrodynamics and Its Applications for Multiphase Flow and Reactive Transport in Porous Media.” Computational Geosciences 20 (4): 807–834. doi:10.1007/s10596-015-9468-9.
  • Tsuruta, A., A. Khayyer, and H. Gotoh. 2013. “A Short Note on Dynamic Stabilization of Moving Particle Semi-implicit Method.” Computers & Fluids 82: 158–164. doi:10.1016/j.compfluid.2013.05.001.
  • Tsuruta, N., H. Gotoh, K. Suzuki, H. Ikari, and K. Shimosako. 2019. “Development of PARISPHERE as the Particle-based Numerical Wave Flume for Coastal Engineering Problems.” Coastal Engineering Journal 61 (1): 41–62. doi:10.1080/21664250.2018.1560683.
  • Violeau, D., C. Buvat, K. Abed-Meraim, and E. de Nanteuil. 2007. “Numerical Modelling of Boom and Oil Spill with SPH.” Coastal Engineering 54 (12): 895–913. doi:10.1016/j.coastaleng.2007.06.001.
  • Wada, H. 2011a. Yousui/haisui No Sangyousyorigijutu (Industrial Disposal Technique for Industrial Water and Waste Water). (in Japanese). Tokyo: Tokyo Denki University Press.
  • Wada, H. 2011b. Pointo Kaisetu; Mizusyorigijutu (Point Explanation; Water Treatment System). (in Japanese). Tokyo: Tokyo Denki University Press.
  • Wang, L., A. Khayyer, H. Gotoh, Q. Jiang, and C. Zhang. 2019. “Enhancement of Pressure Calculation in Projection-based Particle Methods by Incorporation of Background Mesh Scheme.” Coastal Engineering Journal 86: 320–339. doi:10.1016/j.apor.2019.01.017.
  • Wei, Z., C. Li, R. A. Dalrymple, M. Derakhti, and J. Katz. 2018. “Chaos in Breaking Waves.” Coastal Engineering 140: 272–291. doi:10.1016/j.coastaleng.2018.08.001.
  • Wei, Z., H. Shi, C. Li, J. Katz, R. A. Dalrymple, and G. Bilotta 2016. “Behavior of Oil under Breaking Waves by a Two-phase SPH Model.” Proceedings of the 11th international SPHERIC workshop, Munich, Germany, June.
  • Wen, X., D. Wan, and G. Chen 2018. “Multiphase MPS Method for Two-Layer-Liquid Sloshing Flows in Oil-Water Separators.” Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference, Sapporo, Japan, June 10–15.
  • Wendland, H. 1995. “Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree.” Advances in Computational Mathematics 4 (1): 389–396. doi:10.1007/BF02123482.
  • Yan, B., M. Luo, and W. Bai. 2019. “An Experimental and Numerical Study of Plunging Wave Impact on a Box-shape Structure.” Marine Structures 66: 272–287. doi:10.1016/j.marstruc.2019.05.003.
  • Yang, X. F., and M. B. Liu. 2013. “Numerical Modeling of Oil Spill Containment by Boom Using SPH.” Science China Physics, Mechanics and Astronomy 56 (2): 315–321. doi:10.1007/s11433-012-4980-6.
  • Ye, X., B. Chen, P. Li, L. Jing, and G. Zeng. 2019. “A Simulation-based Multi-agent Particle Swarm Optimization Approach for Supporting Dynamic Decision Making in Marine Oil Spill Responses.” Ocean & Coastal Management 172: 128–136. doi:10.1016/j.ocecoaman.2019.02.003.
  • Zheng, X., S. Shao, A. Khayyer, W. Duan, Q. Ma, and K. Liao. 2017. “Corrected First-order Derivative ISPH in Water Wave Simulations.” Coastal Engineering Journal 59 (1): 1750010. doi:10.1142/S0578563417500103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.