260
Views
1
CrossRef citations to date
0
Altmetric
Original Research Paper

Numerical implementation of wave friction factor into the 1D tsunami shallow water equation model

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 174-186 | Received 01 Sep 2020, Accepted 13 Apr 2021, Published online: 05 May 2021

References

  • Adityawan, M. B., H. Tanaka, and P. Lin. 2013. “Boundary Layer Approach in the Modeling of Breaking Solitary Wave runup.” Coastal Engineering 73: 167–177. doi:10.1016/j.coastaleng.2012.11.005.
  • Apotsos, A., M. Buckley, G. Gelfenbaum, B. Jaffe, and D. Vatvani. 2011. “Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications.” Pure and Applied Geophysics 168 (11): 2097–2119. doi:10.1007/s00024-011-0291-5.
  • Bricker, J. D., S. Gibson, H. Takagi, and F. Imamura. 2015. “On the Need for Larger Manning’s Roughness Coefficients in Depth-Integrated Tsunami Inundation Models.” Coastal Engineering Journal 57 (2): 1550005. doi:10.1142/S0578563415500059.
  • Castro, M., A. Ferreiro, J. A. García, J. M. González, J. Macías, C. Parés, and M. E. Vázquez. 2005. “The Numerical Treatment of Wet/dry Fronts in Shallow Flows: Application to One-layer and Two-layer Systems.” Mathematical and Computer Modelling 42 (3–4): 419–439. doi:10.1016/j.mcm.2004.01.016.
  • Engelund, F., and E. Hansen. 1967. A Monograph on Sediment Transport in Alluvial Streams, 62. Copenhagen, Denmark: Teknisk Forlag.
  • Fujima, K., K. Masamura, and C. Goto. 2002. “Theoretical Examinations on Long-Wave Damping by Sea Bottom Friction.” Coastal Engineering Journal 44 (3): 217–245. doi:10.1142/S0578563402000512.
  • Gusman, A. R., T. Goto, K. Satake, T. Takahashi, and T. Ishibe. 2018. “Sediment Transport Modeling of Multiple Grain Sizes for the 2011 Tohoku Tsunami on a Steep Coastal Valley of Numanohama, Northeast Japan.” Marine Geology 405 (1): 77–91. doi:10.1016/j.margeo.2018.08.003.
  • Imamura, F. 1996. “Review of Tsunami Simulation with a Finite Difference Method, Long-wave Runup Models Edited by H.Yeh, P.Liu and C.Synolakis.” In ISBN981-02-2909-7 World Scientific, 25–42.
  • Kamphuis, J. W. 1974. “Determination of Sand Roughness for Fixed Bed.” Journal of Hydraulic Research 12 (2): 193–203. doi:10.1080/00221687409499737.
  • Kim, D.-H., P. Lynett, and S. Socolofsky. 2009. “A Depth-integrated Model for Weakly Dispersive, Turbulent, and Rotational fluid flows.” Ocean Modelling 27 (3–4): 198–214. doi:10.1016/j.ocemod.2009.01.005.
  • Lacy, J. R., D. M. Rubin, and D. Buscombe. 2012. “Currents, Drag, and Sediment Transport Induced by a Tsunami.” Journal of Geophysical Research 117 (C9): C9. doi:10.1029/2012JC007954.
  • Larsen, B. E., and D. R. Fuhrman. 2019a. “Full-scale CFD Simulation of Tsunamis. Part 1: Model Validation and Run-up.” Coastal Engineering 151: 22–41. doi:10.1016/j.coastaleng.2019.04.012.
  • Larsen, B. E., and D. R. Fuhrman. 2019b. “Full-scale CFD Simulation of Tsunamis. Part 2: Boundary Layers and Bed Shear Stresses.” Coastal Engineering 151: 42–57. doi:10.1016/j.coastaleng.2019.04.011.
  • Larson, M. 1996. “A Closed Form Solution for Turbulent Wave Boundary Layers.” Proceedings of 25th International Conference on Coastal Engineering, Orlando, Florida, USA: 3244-3256.
  • Li, L., Q. Qiu, and Z. Huang. 2012. “Numerical Modeling of the Morphological Change in Lhok Nga, West Banda Aceh, during the 2004 Indian Ocean Tsunami: Understanding Tsunami Deposits Using a Forward Modeling Method.” Natural Hazards 64 (2): 1549–1574. doi:10.1007/s11069-012-0325-z.
  • Liu, P. L. F., Y. S. Cho, S. B. Yoon, and S. N. Seo. 1994. “Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii.” In Recent Developments in Tsunami Research, edited by M. I. El-Sabh, 99–115. Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Liu, P. L.-F., Y. S. Park, and E. A. Cowen. 2007. “Boundary Layer Flow and Bed Shear Stress under a Solitary Wave.” Journal of Fluid Mechanics 574: 449–463. doi:10.1017/S0022112006004253.
  • Liu, P. L. F., S. B. Woo, and Y. S. Cho. 1998. “Computer Programs for Tsunami Propagation and Inundation.” Technical report, Cornell University, Ithaca, New York, United States.
  • Lynett, P. J., J. C. Borrero, P. L.-F. Liu, and C. E. Synolakis. 2003. “Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami.” Pure and Applied Geophysics 160 (10–11): 2119–2146. doi:10.1007/s00024-003-2422-0.
  • Menter, F. R. 1994. “Two-equation Eddy-viscosity Turbulence Models for Engineering Applications.” AIAA Journal 32 (8): 1598–1605. doi:10.2514/3.12149.
  • Meyer-Peter, E., and R. Müller. 1948. “Formula for Bed Load Transport.” Proceedings of the 2nd meeting of the International Association for Hydraulic Structures Research, Stockholm: 39–64.
  • Nagano, O., F. Imamura, and N. Shuto. 1991. “A Numerical Model for Far-field Tsunamis and Its Application to Predict Damages Done to Aquaculture.” Natural Hazards 4 (2–3): 235–255. doi:10.1007/BF00162790.
  • Roeber, V., and J. D. Bricker. 2015. “Destructive Tsunami-like Wave Generated by Surf Beat over a Coral Reef during Typhoon Haiyan.” Nature Communications 6 (1): 7854. doi:10.1038/ncomms8854.
  • Sana, A., A.-R. Ghumman, and H. Tanaka. 2009. “Modeling of a Rough-wall Oscillatory Boundary Layer Using Two-equation Turbulence Models.” Journal of Hydraulic Engineering 135 (1): 60–65. doi:10.1061/(ASCE)0733-9429(2009)135:1(60).
  • Sugawara, D., T. Takahashi, and F. Imamura. 2014. “Sediment Transport Due to the 2011 Tohoku-oki Tsunami at Sendai: Results from Numerical Modeling.” Marine Geology 358: 18–37. doi:10.1016/j.margeo.2014.05.005.
  • Sumer, B. M., and D. R. Fuhrman. 2020. “Turbulence in Coastal and Civil Engineering.” World Scientific 758. doi:10.1142/10829.
  • Sumer, B. M., P. M. Jensen, L. B. Sørensen, J. Fredsøe, P. L.-F. Liu, and S. Carstensen. 2010. “Coherent Structures in Wave Boundary Layers. Part 2. Solitary Motion.” Journal of Fluid Mechanics 646: 207–231. doi:10.1017/S0022112009992837.
  • Suntoyo, and H. Tanaka. 2009a. “Effect of Bed Roughness on Turbulent Boundary Layer and Net Sediment Transport under Asymmetric Waves.” Coastal Engineering 56 (9): 960–969. doi:10.1016/j.coastaleng.2009.06.005.
  • Suntoyo,, and H. Tanaka. 2009b. “Numerical Modeling of Boundary Layer Flows for a Solitary Wave.” Journal of Hydro-environment Research 3 (3): 129–137. doi:10.1016/j.jher.2009.05.004.
  • Tanaka, H. 1992. “An Explicit Expression of Friction Coefficient for Wave-Current Coexistent Motion.” Coastal Engineering in Japan 35 (1): 83–91. doi:10.1080/05785634.1992.11924559.
  • Tanaka, H., M. B. Adityawan, Y. Mitobe, and W. Widiyanto. 2016. “A New Computation Method of Bottom Shear Stress under Tsunami Waves.” Journal of Coastal Research SI 75 (sp1): 1247–1251. doi:10.2112/SI75-250.1.
  • Tanaka, H., and N. X. Tinh. 2019. “Numerical Study on Sea Bottom Boundary Layer and Bed Shear Stress under Tsunami.” Proceedings of the 29th International Ocean and Polar Engineering Conference (ISOPE), Honolulu, Hawaii, USA, 3189–3195.
  • Tanaka, H., N. X. Tinh, and A. Sana. 2020. “Improvement of the Full-range Equation for Wave Boundary Layer Thickness.” Journal of Marine Science and Engineering 8 (8): 573. doi:10.3390/jmse8080573.
  • Tanaka, H., B. Winarta, Suntoyo, and H. Yamaji. 2012. “Validation of a New Generation System for Bottom Boundary Layer beneath Solitary Wave.” Coastal Engineering 59 (1): 46–56. doi:10.1016/j.coastaleng.2011.07.003.
  • Suntoyo, H. Tanaka, and A. Sana. 2008. “Characteristics of Turbulent Boundary Layers over a Rough Bed under Saw-tooth Waves and Its Application to Sediment Transport.” Coastal Engineering 55 (12): 1102–1112. doi:10.1016/j.coastaleng.2008.04.007.
  • Tinh, N. X., and H. Tanaka. 2019. “Study on Boundary Layer Development and Bottom Shear Stress beneath Tsunami.” Coastal Engineering Journal 61 (4): 574–589.
  • Tolkova, E. 2014. “Land–Water Boundary Treatment for a Tsunami Model with Dimensional Splitting.” Pure and Applied Geophysics 171 (9): 2289–2314. doi:10.1007/s00024-014-0825-8.
  • Van Rijn, L. C. 1984. “Sediment Transport, Part I: Bed Load Transport.” Journal of Hydraulic Engineering 110 (10): 1431–1456. doi:10.1061/(ASCE)0733-9429(1984)110:10(1431).
  • Vittori, G., and P. Blondeaux. 2014. “The Boundary Layer at the Bottom of a Solitary Wave and Implications for Sediment Transport.” Progress in Oceanography 120: 399–409. doi:10.1016/j.pocean.2013.09.001.
  • Wilcox, D. C. 1988. “Reassessment of the Scale-determining Equation for Advanced Turbulence Models.” AIAA Journal 26 (11): 1299–1310. doi:10.2514/3.10041.
  • Williams, I. A., and D. R. Fuhrman. 2016. “Numerical Simulation of Tsunami-scale Wave Boundary Layers.” Coastal Engineering 110: 17–31. doi:10.1016/j.coastaleng.2015.12.002.
  • Yamashita, K., . D., D. Sugawara., T. Takahashi, F. Imamura, Y. Saito, Y. Imato, T. Kai, et al. 2016. “Numerical Simulations of Large-scale Sediment Transport Caused by the 2011 Tohoku Earthquake Tsunami in Hirota Bay, Southern Sanriku Coast.” Coastal Engineering Journal 58 (4): 1640015. doi:10.1142/S0578563416400155.
  • Yeh, H., and H. B. Mason. 2014. “Sediment Response to Tsunami Loading: Mechanisms and Estimates.” Géotechnique 64 (2): 131–143. doi:10.1680/geot.13.P.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.