3,716
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sensitivity analysis of the physics options in the Weather Research and Forecasting model for typhoon forecasting in Japan and its impacts on storm surge simulations

, , & ORCID Icon
Pages 506-532 | Received 26 Mar 2022, Accepted 07 Sep 2022, Published online: 18 Oct 2022

References

  • Alam, M.M. 2020. “Sensitivity Study of Planetary Boundary Layer Parameterization Schemes for the Simulation of Tropical Cyclone ‘FANI’ over the Bay of Bengal Using High Resolution WRF-ARW Model.” Journal of Engineering Science 11 (2): 1–18. doi:10.3329/jes.v11i2.50893.
  • Bopape, M.-J. M., H. Cardoso, R. S. Plant, E. Phaduli, H. Chikoore, T. Ndarana, E. Rakate, and E. Rakate. 2021. “Sensitivity of Tropical Cyclone Idai Simulations to Cumulus Parametrization Schemes.” Atmosphere 12 (8): 932. doi:10.3390/atmos12080932.
  • Chan, K. T. F., and J. C. L. Chan. 2016. “Sensitivity of the Simulation of Tropical Cyclone Size to Microphysics Schemes.” Advances in Atmospheric Sciences 33 (9): 1024–1035. doi:10.1007/s00376-016-5183-2.
  • Chandrasekar, R., and C. Balaji. 2012. “Sensitivity of Tropical Cyclone Jal Simulations to Physics Parameterizations.” Journal of Earth System Science 121 (4): 923–946. doi:10.1007/s12040-012-0212-8.
  • Chen, S., Yk. Qian, and S. Peng. 2015. “Effects of Various Combinations of Boundary Layer Schemes and Microphysics Schemes on the Track Forecasts of Tropical Cyclones Over the South China Sea.” Nat Hazards 78: 61–74. doi:10.1007/s11069-015-1697-7.
  • Chen, S.-H., and W.-Y. Sun. 2002. “A One-dimensional Time Dependent Cloud Model.” Journal of the Meteorological Society of Japan 80 (1): 99–118. doi:10.2151/jmsj.80.99.
  • Choudhury, D., and S. Das. 2017. “The Sensitivity to the Microphysical Schemes on the Skill of Forecasting the Track and Intensity of Tropical Cyclones Using WRF-ARW Model.” Journal of Earth System Science 126 (4): 57. doi:10.1007/s12040-017-0830-2.
  • Davis, C., W. Wang, S.-S. Chen, Y. Chen, K. Corbosiero, M. DeMaria, J. Dudhia, et al. 2008. “Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model.” Monthly Weather Review 136 (6): 1990–2005. doi:10.1175/2007MWR2085.1.
  • Di, Z., W. Gong, Y. Gan, C. Shen, and Q. Duan. 2019. “Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-day Typhoon Simulations over the Northwest Pacific Ocean.” Atmosphere 10 (5): 233. doi:10.3390/atmos10050233.
  • Douluri, D. L., and K. Annapurnaiah. 2016. “Impact of Microphysics Schemes in the Simulation of Cyclone Hudhud Using WRF-ARW Model.” International Journal of Oceans and Oceanography 10 (1): 49–59.
  • Douluri, D. L., P. L. N. Murty, P. K. Bhaskaran, B. Sahoo, T. S. Kumar, S. S. C. Shenoi, and A. S. Srikanth. 2017. “Performance of WRF-ARW Winds on Computed Storm Surge Using Hydrodynamic Model for Phailin and Hudhud Cyclones.” Ocean Engineering 131: 135–148. doi:10.1016/j.oceaneng.2017.01.005.
  • Fovell, R. G., and H. Su. 2007. “Impact of Cloud Microphysics on Hurricane Track Forecasts.” Geophysical Research Letters 34 (24): 24. doi:10.1029/2007GL031723.
  • “GEBCO 30 arc-seconds Grid” https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid/ ( final reference: 26 March 2021
  • Hill, K. A., and G. M. Lackmann. 2009. “Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid Spacing.” Monthly Weather Review 137 (2): 745–765. doi:10.1175/2008MWR2220.1.
  • Honda, K., R. Naito, and T. Asai. 2016. “Damage to Port Areas along Seto Inland Sea Due to Storm Surge and Waves of Typhoon 1511.” Technical Note of NILIM, 893: 1–40.
  • Hong, S.–Y., D. Jimy, and S.–H. Chen. 2004. “A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation.” Monthly Weather Review 132 (132): 103–120. doi:10.1175/1520-0493(2004)132<0103:ARATIM><0103:ARATIM>2.0.CO;2.
  • Hong, S.Y., and J. O. J. Lim. 2006. “The WRF Single-moment 6-class Microphysics Scheme (WSM6).” Journal of Korean Meteorological Society 42: 129–151.
  • Hong, S.–Y., N. Yign, and D. Jimy. 2006. “A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes.” Monthly Weather Review 134 (134): 2318–2341. doi:10.1175/MWR3199.1.
  • Islam, T., P.K. Srivastava, M.A. R-Ramirez, Q. Dai, M. Gupta, and SK. Singh. 2015. “Tracking a Tropical Cyclone through WRF–ARW Simulation and Sensitivity of Model Physics.” Natural Hazards 76 (3): 1473–1495. doi:10.1007/s11069-014-1494-8.
  • Ito, K., T. Kuroda, K. Saito, and A. Wada. 2015. “Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-resolution Atmosphere–ocean Coupled Model.” Weather and Forecasting 30 (3): 793–808. doi:10.1175/WAF-D-14-00034.1.
  • Jang, D., W. Joo, C.-H. Jeong, W. Kim, S. W. Park, and Y. Song. 2020. “The Downscaling Study for Typhoon-induced Coastal Inundation.” Water 12 (4): 1103. doi:10.3390/w12041103.
  • Janjic, Z. I. 1994. “The Step-mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer and Turbulence Closure Schemes.” Monthly Weather Review 122 (122): 927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
  • Japan Meteorological Agency, 2021. “Storm Surge Models and Their Use - Forecasting Work in Storm Surge Cases.” https://www.jma.go.jp/jma/kishou/know/expert/pdf/r2_text/r2_takashio.pdf ( Final Access, 5 January 2022
  • Kanase, R. D., Salvekar, and P S. Salvekar. 2015. “Impact of Physical Parameterization Schemes on Track and Intensity of Severe Cyclonic Storms in Bay of Bengal.” Meteorology and Atmospheric Physics 127 (5): 537–559. doi:10.1007/s00703-015-0381-5.
  • Kim, S. Y., T. Matsuura, Y. Matsumi, K. Tamai, T Yasuda, T. H. Tom, and H. Mase. 2013. Effects of WRF Parameterization on Meteorological Predictions in the mid-latitude Region – Planetary Boundary Layer Scheme and Cloud Microphysics. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering). in Japanese 69 2: I_516–I_520. 10.2208/kaigan.69.I_516.
  • Kloetzke, T., M. S. Mason, and R. J. Krupar, 2016. “Sensitivity of WRF-ARW Simulations to the Choice of Physics Parameterization Schemes When Reconstructing Tropical Cyclone Ita (2014)” 18th Australasian Wind Engineering Society Workshop McLaren Vale, South Australia, 6-8 July 2016.
  • Kohno, N., S. K. Dube, M. Entel, S. H. Fakhruddin, D. Greenslade, M.-D. Leroux, J. Rhome, and N. B. Thuy. 2018. “Recent Progress in Storm Surge Forecasting.” Tropical Cyclone Research and Review 7 (2): 128–139. doi:10.6057/2018TCRR02.04.
  • Li, J., Y. Hou, D. Mo, Q. Liu, and Y. Zhang. 2019. “Influence of Tropical Cyclone Intensity and Size on Storm Surge in the Northern East China Sea.” Remote Sensing 11 (24): 3033. doi:10.3390/rs11243033.
  • Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke. 2012. “Physically Based Assessment of Hurricane Surge Threat under Climate Change.” Nature Climate Change 2 (6): 462–467. doi:10.1038/NCLIMATE1389.
  • Li, X., and Z. Pu. 2008. “Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations.” Monthly Weather Review 136 (12): 4819–4838. doi:10.1175/2008MWR2366.1.
  • Li, X., and Z. Pu. 2009. “Sensitivity of Numerical Simulations of the Early Rapid Intensification of Hurricane Emily to Cumulus Parameterization Schemes in Different Model Horizontal Resolutions.” Journal of the Meteorological Society of Japan 87 (3): 403–421. doi:10.2151/jmsj.87.403.
  • Maldonado, T., J.A. Amador, R.R. Rivera, H.G. Hidalgo, and E.J. Alfaro. 2020. “Examination of WRF-ARW Experiments Using Different Planetary Boundary Layer Parameterizations to Study the Rapid Intensification and Trajectory of Hurricane Otto (2016).” Atmosphere 11 (12): 1317. doi:10.3390/atmos11121317.
  • Maw, K.-W., J. Min. 2017. “Impacts of Microphysics Schemes and Topography on the Prediction of the Heavy Rainfall in Western Myanmar Associated with Tropical Cyclone ROANU (2016).” Advances in Meteorology 2017: 22 doi:10.1155/2017/3252503.
  • Mesinger, F.1993.“Forecasting Upper Tropospheric Turbulence within the Framework of the Mellor-Yamada 2.5 Closure.”Research Activities in Atmospheric and Oceanic Modelling WMO 18: 4.28–4.29. Geneva, CAS/JSC WGNE Rep.
  • Ming, J., S. Shu, Y. Wang, J. Tang, and B. Chen. 2012. “Modeling Rapid Intensification of Typhoon Saomai (2006) with the Weather Research and Forecasting Model and Sensitivity to Cloud Microphysical Parameterizations.” Journal of the Meteorological Society of Japan 90 (5): 771–789. doi:10.2151/jmsj.2012-513.
  • Musinguzi, A., M. K. Akbar, J. G. Fleming, and S. K. Hargrove. 2019. “Understanding Hurricane Storm Surge Generation and Propagation Using a Forecasting Model, Forecast Advisories and Best Track in a Wind Model, and Observed Data-case Study Hurricane Rita.” Journal of Marine Science and Engineering 7 (3): 77. doi:10.3390/jmse7030077.
  • Myers, V.A. 1954. “Characteristics of United States Hurricanes Pertinent to Levee Design for Lake Okechobee, Florida.” In Hydrometeorologic Reports. Vol. 32. Weather Bureau: U.S. Department of Commerce. 1–106.
  • Nasrollahi, N., A. AghaKouchak, J. Li, X. Gao, K. Hsu, and S. Sorooshian. 2012. “Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations.” Weather and Forecasting 27 (4): 1003–1016. doi:10.1175/WAF-D-10-05000.1.
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2015, updated daily. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed 1 September, 2022. doi:10.5065/D65Q4T4Z
  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2015, updated daily. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed 1 September, 2022. doi:10.5065/D65D8PWK
  • Nolan, D.S., D.P. Stern, and J.A. Zhang. 2009. “Evaluation of Planetary Boundary Layer Parameterizations in Tropical Cyclones by Comparison of in Situ Observations and High-Resolution Simulations of Hurricane Isabel (2003). Part II: Inner-Core Boundary Layer and Eyewall Structure.” Monthly Weather Review 137 (11): 3675–3698. doi:10.1175/2009MWR2786.1.
  • Osuri, K. K., U. C. Mohanty, A. Routray, M. A. Kulkarni, and M. Mohapatra. 2012. “Customization of WRF-ARW Model with Physical Parameterization Schemes for the Simulation of Tropical Cyclones over North Indian Ocean.” Natural Hazards 63 (3): 1337–1359. doi:10.1007/s11069-011-9862-0.
  • Park, J., D.-H. Cha, M.K. Lee, J. Moon, S.-J Hahm, K. Noh, C.L.C. Johnny, and B. Michael. 2020. “Impact of Cloud Microphysics Schemes on Tropical Cyclone Forecast over the Western North Pacific.” Journal of Geophysical Research: Atmospheres 125: e2019JD032288. doi:10.1029/2019JD032288.
  • Powers, J. G., J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, and M. G. Duda. 2017. “The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions.” Bulletin of the American Meteorological Society 98 (8): 1717–1737. doi:10.1175/BAMS-D-15-00308.1.
  • Rajeswari, J. R., C. V. Srinvas, P. Reshimi Mohan, and B. Venkatraman. 2020. “Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model.” Pure and Applied Geophysics 177 (2020): 5523–5550. doi:10.1007/s00024-020-02572-3.
  • Reddy, M. V., S B S. Prasad, U V M. Krishna, and K. K. Reddy. 2014. “Effect of Cumulus and Microphysical Parameterizations on the JAL Cyclone Prediction.” Indian Journal of Radio & Space Physics 43: 103–123.
  • Saikumar, P. J., and T. Ramashri. 2017. “Impact of Physics Parameterization Schemes in the Simulation of Laila Cyclone Using the Advanced Mesoscale Weather Research and Forecasting Model.” International Journal of Applied Engineering Research 12 (22): 12645–12651.
  • Saikumar, P. J., and T. Ramashri. 2018. “Impact of Microphysics Parameterization Schemes in Simulation of Vardah Cyclone Using the Advanced Mesoscale Weather Research and Forecasting Model.” International Journal of Engineering & Technology 7 (3.29): 272–274. doi:10.14419/ijet.v7i3.29.18809.
  • Shen, F., A. Shu, H. Li, D. Xu, and J. Min. 2021. “Assimilation of Himawari-8 Imager Radiance Data with the WRF-3DVAR System for the Prediction of Typhoon Soudelor.” Natural Hazards and Earth System Sciences 21 (5): 1569–1582. doi:10.5194/nhess-21-1569-2021.
  • Shirai, T., K. Fujiwara, M. Watanabe, and T. Arikawa. 2020. “A Study of Computation Time and Accuracy of the Prediction of Storm Surge and Waves Using Global WRF Model.” Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering) 76 (2): I_247–I_252. doi:10.2208/kaigan.76.2_I_247. Japanese.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-y. Huang, W. Wang, and J. G. Powers. 2008. “A Description of the Advanced Research WRF Version 3.” NCAR Technical Notes 113. NCAR/TN-4751STR. doi:10.5065/D68S4MVH.
  • Srinivas, C.V., D. B. Rao, V. Yesubabu, R. Baskaran, and B. Venkatraman. 2013. “Tropical Cyclone Predictions over the Bay of Bengal Using the high-resolution Advanced Research Weather Research and Forecasting (ARW) Model.” Quarterly Journal of the Royal Meteorological Society 139 (676): 1810–1825. doi:10.1002/qj.2064.
  • Sun, Y., Z. Zhong, and W. Lu. 2015. ””Sensitivity of Tropical Cyclone Feedback on the Intensity of the Western Pacific Subtropical High to Microphysics Schemes.” Journal of the Atmospheric Sciences.” 72 (4): 1346–1368. doi:10.1175/JAS-D-14-0051.1.
  • Tang, j., J. A. Zhang, C. Kieu, and F. D. Marks. 2018. “Sensitivity of Hurricane Intensity and Structure to Two Types of Planetary Boundary Layer Parameterization Schemes in Idealized HWRF Simulations.” Tropical Cyclone Research and Review 7 (4): 201–211. doi:10.6057/2018TCRR04.01.
  • Tao, WK., J.J. Shi, S.S. Chen, S. Lang, P-L Lin, S.-Y. Hong, Christa P.-Lidard, and A. Hou. 2011. “The Impact of Microphysical Schemes on Hurricane Intensity and Track.” Asia-Pacific Journal of Atmospheric Sciences 47 (1): 1–16. doi:10.1007/s13143-011-1001-z.
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall. 2008. “Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization.” Monthly Weather Review 136 (136): 5095–5115. doi:10.1175/2008MWR2387.1.
  • Tomita, T., and T. Kakinuma. 2005. “Storm Surge and Tsunami Simulator in Oceans and Coastal Areas (STOC).”Report of the Port and Airport Research Institute 44 (2) 83–98 in Japanese
  • Torres, M.J., M.R. Hashemi, S. Hayward, M. Spaulding, I. Ginis, and S. Grilli. 2019. “Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves.” Journal of Waterway, Port, Coastal, and Ocean Engineering 145 (1). doi:10.1061/(ASCE)WW.1943-5460.0000496.
  • Tsai, Y.-L., T.-R. Wu, C.-Y Lin, S. C. Lin, E. Yen, and C. W. Lin. 2020. “Discrepancies on Storm Surge Predictions by Parametric Wind Model and Numerical Weather Prediction Model in a Semi-enclosed Bay: Case Study of Typhoon Haiyan.” Water 12 (12): 3326. doi:10.3390/w12123326.
  • Valle, A. N. R., E. N. Curchitser, and C. L. Bruyere. 2020. “Impact of Tropical Cyclone Landfall Angle on Storm Surge along the Mid‐Atlantic Bight.” Journal of Geophysical Research: Atmospheres 125: e2019JD031796. doi:10.1029/2019JD031796.
  • Valle, A. N. R., E. N. Curchitser, C. L. Bruyere, and K. R. Fossell. 2018. “Simulating Storm Surge Impacts with a Coupled Atmosphere-inundation Model with Varying Meteorological Forcing.” Journal of Marine Science and Engineering 6 (2): 35. doi:10.3390/jmse6020035.
  • Wannawong, W., D. Wang, Y. Zhang, and C. Ekkawatpanit. 2018. “Sensitivity of Different Parameterizations on Simulation of Tropical Cyclone Durian over the South China Sea Using Weather Research and Forecasting (WRF) Model.” Preprint. doi:10.20944/preprints201804.0336.v1.
  • Wu, Z., C. Jiang, B. Deng, J. Chen, and X. Liu. 2019. “Sensitivity of WRF Simulated Typhoon Track and Intensity over the South China Sea to Horizontal and Vertical Resolutions.” Acta Oceanologica Sinica 38 (7): 74–83. doi:10.1007/s13131-019-1459-z.
  • Xie, Y., S. Shang, J. Chen, F. Zhang, Z. He, G. Wei, J. Wu, B. Zhu, and Y. Zeng. 2021. “Fast Storm Surge Ensemble Prediction Using Searching Optimization of a Numerical Scenario Database.” Weather and Forecasting 36 (5): 1629–1648. doi:10.1175/WAF-D-20-0205.1. Retrieved 5 March 2022.
  • Yamamoto, N., S. Aoi, K. Hirata, W. Suzuki, T. Kunugi, and H. Nakamura. 2016. “Multi-index Method Using Offshore Ocean-bottom Pressure Data for Real-time Tsunami Forecast.” Earth, Planets and Space 68 (128). doi:10.1186/s40623-016-0500-7.
  • Zhang, F., M. Li, A. C. Ross, S. B. Lee, and D.-L. Zhang. 2017. “Sensitivity Analysis of Hurricane Arthur (2014). Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations.” Weather and Forecasting 32 (5): 1745–1764. doi:10.1175/WAF-D-16-0218.1.