832
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Future changes in extreme storm surge based on a maximum potential storm surge model for East Asia

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 630-647 | Received 03 Sep 2021, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Bister, M, and K.A. Emanuel. 2002. “Low Frequency Variability of Tropical Cyclone Potential Intensity 1. Interannual to Interdecadal Variability.” Journal of Geophysical Research: Atmospheres 107 (D24): ACL–26. doi:10.1029/2001JD000776.
  • Dai, A., and J. Wang. 1999. “Diurnal and Semidiurnal Tides in Global Surface Pressure Fields.” Journal of the Atmospheric Sciences 56 (22): 3874–3891. doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.
  • Emanuel, K.A. 1988. “The Maximum Intensity of Hurricanes.” Journal of the Atmospheric Sciences 45 (7): 1143–1155. doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.
  • Emanuel, K.A. 2013. “Results of Downscaling CMIP5 Climate Models.” Proc. Natl. Acad. Sci. USA 110 (12): 219.
  • Emanuel, K.A. 2021. http://emanuel.mit.edu/
  • Fujii, T., and Y. Mitsuta. 1986. “Simulation of Winds in Typhoons by a Stochastic Model.” Wind Engineers JAWE 1 (28): 1–12. doi:10.5359/jawe.1986.28_1.
  • GEBCO Compilation Group. 2020. “GEBCO 2020 Grid.” British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9.
  • Gönnert, G., and B. Gerkensmeier. 2015. “A multi-method Approach to Develop Extreme Storm Surge Events to Strengthen the Resilience of Highly Vulnerable Coastal Areas.” Coastal Engineering Journal 57 (1): 1540002. doi:10.1142/S0578563415400021.
  • Haarsma, R.J., M.J. Roberts, P.L. Vidale, C.A. Senior, A. Bellucci, Q. Bao, P. Chang, et al. 2016. “High Resolution Model Intercomparison Project (Highresmip v1. 0) for CMIP6.” Geoscientific Model Development 9 (11): 4185–4208. doi:10.5194/gmd-9-4185-2016.
  • Holland, G.J. 1997. “The Maximum Potential Intensity of Tropical Cyclones.” Journal of the Atmospheric Sciences 54 (21): 2519–2541. doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.
  • Igarashi, Y., and Y. Tajima. 2021. “Application of Recurrent Neural Network for Prediction of the time-varying Storm Surge.” Coastal Engineering Journal 63 (1): 68–82. doi:10.1080/21664250.2020.1868736.
  • Ishii, M., and N. Mori. 2020. “d4PDF: Large-ensemble and high-resolution Climate Simulations for Global Warming Risk Assessment.” Progress in Earth and Planetary Science 7 (1): 58. doi:10.1186/s40645-020-00367-7.
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto. 2005. “Objective Analyses of Sea‐surface Temperature and Marine Meteorological Variables for the 20th Century Using ICOADS and the Kobe Collection.” International Journal of Climatology: A Journal of the Royal Meteorological Society 25 (7): 865–879. doi:10.1002/joc.1169.
  • Japan Hydrographic Association. 2021. “Digital Data of Seafloor Topography.” https://www.jha.or.jp/jp/shop/products/btdd/index.html accessed January 2021.
  • Kim, S., J, K.D Oh, H Suh, and H Mase. 2017. “Estimation of Climate Change Impact on Storm Surges: Application to Korean Peninsula.” Coastal Engineering Journal 59 (2): 1740004. doi:10.1142/S0578563417400046.
  • Kim, S.Y., T. Yasuda, and H. Mase. 2010. “Wave Setup in the Storm Surge along Open Coasts during Typhoon Anita.” Coastal Engineering 57 (7): 631–642. doi:10.1016/j.coastaleng.2010.02.004.
  • Knaff, J. A., B. A. Harper, and D. Brown. 2010. “Tropical Cyclone Surface Wind Structure and wind-pressure Relationships” In Proc. WMO International Workshop on Tropical Cyclones, VII 20100. La Réunion, France.
  • Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, et al. 2015. “The JRA-55 Reanalysis: General Specifications and Basic Characteristics.” Journal of the Meteorological Society of Japan 93 (1): 5–48.
  • Kossin, J.P., K.A. Emanuel, and S.J. Camargo. 2016. “Past and Projected Changes in Western North Pacific Tropical Cyclone Exposure.” Journal of Climate 29 (16): 5725–5739. doi:10.1175/JCLI-D-16-0076.1.
  • Kumagai, K., N. Mori, and S. Nakajo. 2016. “Storm Surge Hindcast and Return Period of a Haiyan-like Super Typhoon.” Coastal Engineering Journal 58 (1): 1640001. doi:10.1142/S0578563416400015.
  • Mikami, T., T. Shibayama, H. Takagi, R. Matsumaru, M. Esteban, N.D. Thao, and S. Li. 2016. “Storm Surge Heights and Damage Caused by the 2013 Typhoon Haiyan along the Leyte Gulf Coast.” Coastal Engineering Journal 58 (1): 1640005. doi:10.1142/S0578563416400052.
  • Mizuta, R., A. Murata, M. Ishii, H. Shiogama, K. Hibino, N. Mori, O. Arakawa, et al. 2017. “Over 5000 Years of Ensemble Future Climate Simulations by 60 Km Global and 20 Km Regional Atmospheric Models.” The Bulletin of the American Meteorological Society (BAMS) 1383–1398. doi:10.1175/BAMS-D-16-0099.1.
  • Mizuta, R., H. Yoshimura, H. Murakami, M. Matsueda, H. Endo, T. Ose, K. Kamiguchi, et al. 2012. “Climate Simulations Using MRI-AGCM3.2 with 20-km Grid.” Journal of the Meteorological Society of Japan 90: 233–258.
  • Mori, N., N. Ariyoshi, T. Shimura, T. Miyashita, and J. Ninomiya. 2021b. “Future Projection of Maximum Potential Storm Surge Height at Three Major Bays in Japan Using the Maximum Potential Intensity of a Tropical Cyclone.” Climatic Change 164 (3–4): 25. doi:10.1007/s10584-021-02980-x.
  • Mori, N., M. Kato, S. Kim, H. Mase, Y. Shibutani, T. Takemi, K. Tsuboki, and T. Yasuda. 2014. “Local Amplification of Storm Surge by Super Typhoon Haiyan in Leyte Gulf.” Geophysical Research Letters 41 (14): 5106–5113. doi:10.1002/2014GL060689.
  • Mori, S., N. Mori, T. Shimura, and T. Miyashita. 2021c. “Long-term Changes in Maximum Potential Storm Surge Height in Japan’s Major Bays Due to Climate Change.” Journal of Japan Society of Civil Engineers 77 (2): I_937–I_942. in Japanese.
  • Mori, N., T. Shimura, K. Yoshida, R. Mizuta, Y. Okada, M. Fujita, T. Temur Khujanazarov, and E. Nakakita. 2019a. “Future Changes in Extreme Storm Surges Based on mega-ensemble Projection Using 60-km Resolution Atmospheric Global Circulation Model.” Coastal Engineering Journal 61 (3): 3 295–307. doi:10.1080/21664250.2019.1586290.
  • Mori, N., and T. Takemi. 2016. “Impact Assessment of Coastal Hazards Due to Future Changes of Tropical Cyclones in the North Pacific Ocean.” Weather and Climate Extremes 11: 53–69. doi:10.1016/j.wace.2015.09.002.
  • Mori, N., T. Takemi, Y. Tachikawa, H. Tatano, T. Shimura, T. Tanaka, T. Fujimi, Y. Osakada, A. Webb, and E. Nakakita. 2021a. “Recent Nationwide Climate Change Impact Assessments of Natural Hazards in Japan and East Asia.” Weather and Climate Extremes 32: 100309. doi:10.1016/j.wace.2021.100309.
  • Mori, N., T. Yasuda, T. Arikawa, T. Kataoka, S. Nakajo, K. Suzuki, Y. Yamanaka, and A. Webb. 2019b. “2018 Typhoon Jebi post-event Survey of Coastal Damage in the Kansai Region, Japan.” Coastal Engineering Journal 61 (3): 278–294. doi:10.1080/21664250.2019.1619253.
  • Nakajo, S., N. Mori, T. Yasuda, and H. Mase. 2014. “Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis.” Journal of Applied Meteorology and Climatology American Meteorological Society 53 (6): 1547–1577. doi:10.1175/JAMC-D-13-08.1.
  • Nakamura, R., T. Shibayama, M. Esteban, T. Iwamoto, and S. Nishizaki. 2020. “Simulations of Future Typhoons and Storm Surges around Tokyo Bay Using IPCC AR5 RCP 8.5 Scenario in Multi Global Climate Models.” Coastal Engineering Journal 62 (1): 101–127. doi:10.1080/21664250.2019.1709014.
  • Ninomiya, J., N. Mori, T. Takemi, and O. Arakawa. 2017. “SST Ensemble experiment-based Impact Assessment of Climate Change on Storm Surge Caused by pseudo-global Warming: Case Study of Typhoon Vera in 1959.” Coastal Engineering Journal 59 (2): 1740002. doi:10.1142/S0578563417400022.
  • Pörtner, H.O., D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, et al. 2019. “IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.” IPCC Intergovernmental Panel on Climate Change. Geneva, Switzerland . Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp. doi:10.1017/9781009157964.
  • Pringle, W.J., D. Wirasaet, K.J. Roberts, and J.J. Westerink. 2021. “Global Storm Tide Modeling with ADCIRC v55: Unstructured Mesh Design and Performance.” Geoscientific Model Development 14 (2): 1125–1145. doi:10.5194/gmd-14-1125-2021.
  • Shimura, T., W. J. Pringle, N. Mori, T. Miyashita, and K. Yoshida. 2022. “Seamless Projections of Global Storm Surge and Ocean Waves under a Warming Climate.” Geophysical Research Letters 49 (6): e2021GL097427. doi:10.1029/2021GL097427.
  • Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. “Summary for Policymakers, Climate Change 2021, the Physical Science Basis.” In IPCC Intergovernmental Panel on Climate Change, 41. Geneva, Switzerland.
  • Tajima, Y., T. Yasuda, B.M. Pacheco, E.C. Cruz, K. Kawasaki, H. Nobuoka, M. Miyamoto, et al. 2014. “Initial Report of JSCE-PICE Joint Survey on the Storm Surge Disaster Caused by Typhoon Haiyan.” Coastal Engineering Journal 56 (1): 1450006. doi:10.1142/S0578563414500065.
  • Takayabu, I., K. Hibino, H. Sasaki, H. Shiogama, N. Mori, Y. Shibutani, and T. Takemi. 2015. “Climate Change Effects on the worst-case Storm Surge: A Case Study of Typhoon Haiyan.” Environmental Research Letters 10: 064011, 9. doi:10.1088/1748-9326/10/6/064011.
  • Toyoda, M., N. Fukui, T. Miyashita, T. Shimura, and N. Mori. 2022b. “Uncertainty of Storm Surge Forecast Using Integrated Atmospheric and Storm Surge Model: A Case Study on Typhoon Haishen 2020.” Coastal Engineering Journal 64 (1): 135–150. doi:10.1080/21664250.2021.1997506.
  • Toyoda, M., J. Yoshino, and T. Kobayashi. 2022a. “Future Changes in Typhoons and Storm Surges along the Pacific Coast in Japan: Proposal of an Empirical pseudo-global-warming Downscaling.” Coastal Engineering Journal 64 (1): 190–215. doi:10.1080/21664250.2021.2002060.
  • Wahl, T., C. Mudersbach, and J. Jensen C. 2015. “Statistical Assessment of Storm Surge Scenarios within Integrated Risk Analyses.” Coastal Engineering Journal 57 (1): 1540003. doi:10.1142/S0578563415400033.
  • Webb, A., T. Shimura, and N. Mori. 2019. “Global Tropical Cyclone Track Detection and Analysis of the d4PDF mega-ensemble Projection.” Journal of Japan Society of Civil Engineers 75 (2): I_1207–I_1212.
  • Yasuda, T., S. Nakajo, S. Kim, H. Mase, N. Mori, and K. Horsburgh. 2014. “Evaluation of Future Storm Surge Risk in East Asia Based on state-of-the-art Climate Change Projection.” Coastal Engineering 83: 65–71. doi:10.1016/j.coastaleng.2013.10.003.
  • Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii. 2017. “Future Changes in Tropical Cyclone Activity in high-resolution large-ensemble Simulations.” Geophysical Research Letters 44 (19): 9910–9917. doi:10.1002/2017GL075058.