221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme

, &
Pages 347-368 | Received 02 Jan 2023, Accepted 11 Apr 2023, Published online: 20 Apr 2023

References

  • Akbari, H. 2014. “Modified Moving Particle Method for Modeling Wave Interaction with Multi Layered Porous Structures.” Coastal Engineering 89: 1–194. doi:10.1016/j.coastaleng.2014.03.004.
  • Akbari, H., and M. M. Namin. 2013. “Moving Particle Method for Modeling Wave Interaction with Porous Structures.” Coastal Engineering 74: 59–73. doi:10.1016/j.coastaleng.2012.12.002.
  • Akbari, H., and M. Torabbeigi. 2021. “SPH Modeling of Wave Interaction with Reshaped and Non-Reshaped Berm Breakwaters with Permeable Layers.” Applied Ocean Research 112: 102714. doi:10.1016/j.apor.2021.102714.
  • Anderson, T. B., and R. Jackson. 1967. “A Fluid Mechanical Description of Fluidized Beds.” Industrial & Engineering Chemistry Fundamentals 6 (4): 523–539. doi:10.1021/i160024a007.
  • Austin, M. J., and G. Masselink. 2006. “Swash-Groundwater Interaction on a Steep Gravel Beach.” Continental Shelf Research 26 (20): 2503–2519. doi:10.1016/j.csr.2006.07.031.
  • Baldock, T. E., P. Holmes, and D. P. Horn. 1997. “Low Frequency Swash Motion Induced by Wave Grouping.” Coastal Engineering 32 (2–3): 197–222. doi:10.1016/S0378-3839(97)81750-4.
  • Barnes, M. P., and T. E. Baldock. 2007. “Direct Bed Shear Stress Measurements in Laboratory Swash.” Journal of Coastal Research 641–645.
  • Briganti, R., A. Torres-Freyermuth, T. E. Baldock, M. Brocchini, N. Dodd, T. J. Hsu, Z. Jiang, Y. Kim, J. C. Pintado-Patino, and M. Postacchini. 2016. “Advances in Numerical Modelling of Swash Zone Dynamics.” Coastal Engineering 115: 26–41. doi:10.1016/j.coastaleng.2016.05.001.
  • Brown, C. B. 1950. “Engineering Hydraulics.“ New York, NY: John Wiley & Sons, Inc.
  • Bui, H. H., and G. D. Nguyen. 2017. “A Coupled Fluid-Solid SPH Approach to Modelling Flow Through Deformable Porous Media.” International Journal of Solids and Structures 125: 244–264. doi:10.1016/j.ijsolstr.2017.06.022.
  • Chorin, A. J. 1968. “Numerical Solution of the Navier-Stokes Equations.” Mathematics of Computation 22 (104): 745–762. doi:10.1090/S0025-5718-1968-0242392-2.
  • Conley, D. C., and J. G. Griffin. 2004. “Direct Measurements of Bed Stress Under Swash in the Field.” Journal of Geophysical Research: Oceans 109 (C3): C03050. doi:10.1029/2003JC001899.
  • Conley, D. C., and D. L. Inman. 1994. “Ventilated Oscillatory Boundary Layersx.” Journal of Fluid Mechanics 273: 261–284. doi:10.1017/S002211209400193X.
  • Cundall, P. A., and O. D. L. Strack. 1979. “A Discrete Numerical Model for Granular Assemblies.” Geotechnique 29 (1): 47–65. doi:10.1680/geot.1979.29.1.47.
  • Dai, H. J., G. A. Kikkert, B. T. Chen, and D. Pokrajac. 2017. “Entrained Air in Bore-Driven Swash on an Impermeable Rough Slope.” Coastal Engineering 121: 26–43. doi:10.1016/j.coastaleng.2016.10.002.
  • Elghannay, H., and D. Tafti. 2018. “LES-DEM Simulations of Sediment Transport.” International Journal of Sediment Research 33 (2): 137–148. doi:10.1016/j.ijsrc.2017.09.006.
  • Ergun, S. 1952. “Fluid Flow Through Packed Columns.” Chemical Engineering Progress 48: 89–94.
  • Francalanci, S., G. Parker, and L. Solari. 2008. “Effect of Seepage Induced Nonhydrostatic Pressure Distribution on Bed-Load Transport and Bed Morphodynamics.” Journal of Hydraulic Engineering 134 (4): 378–389. doi:10.1061/(ASCE)0733-9429(2008)134:4(378).
  • Gotoh, H. 2018. Ryushiho. Japan: Morikita Shuppan.
  • Gotoh, H., and A. Khayyer. 2016. “Current Achievements and Future Perspectives for Projection-Based Particle Methods with Applications in Ocean Engineering.” Journal of Ocean Engineering and Marine Energy 2 (3): 251–278. doi:10.1007/s40722-016-0049-3.
  • Gotoh, H., and A. Khayyer. 2018. “On the State-Of-The-Art of Particle Methods for Coastal and Ocean Engineering.” Coastal Engineering Journal 60 (1): 79–103. doi:10.1080/21664250.2018.1436243.
  • Gotoh, H., and T. Sakai. 1997. “Numerical Simulation of Sheetflow as Granular Material.” Journal of Waterway, Port, Coastal, and Ocean Engineering 123 (6): 329–336. doi:10.1061/(ASCE)0733-950X(1997)123:6(329).
  • Gotoh, H., T. Shibahara, and T. Sakai. 2001. “Sub-Particle-Scale Turbulence Model for the MPS Method-Lagrangian Flow Model for Hydraulic Engineering.” Computational Fluid Dynamics Journal 9 (4): 339–347.
  • Gui, Q., P. Dong, S. Shao, and Y. Chen. 2015. “Incompressible SPH Simulation of Wave Interaction with Porous Structure.” Ocean Engineering 110: 126–139. doi:10.1016/j.oceaneng.2015.10.013.
  • Hansen, J. B., and I. A. Svendsen. 1984. “A Theoretical and Experimental Study of Undertow.” Coastal Engineering Proceedings, Houston, Texas, United States, 1 (19): 151.
  • Harada, E., and H. Gotoh. 2008. “Computational Mechanics of Vertical Sorting of Sediment in Sheetflow Regime by 3D Granular Material Model.” Coastal Engineering Journal 50 (1): 19–45. doi:10.1142/S0578563408001715.
  • Harada, E., H. Gotoh, H. Ikari, and A. Khayyer. 2019. “Numerical Simulation for Sediment Transport Using MPS-DEM Coupling Model.” Advances Water Resources 129: 354–364. doi:10.1016/j.advwatres.2017.08.007.
  • Harada, E., H. Gotoh, and T. Sakai. 2002. “Computational Mechanical Approach to Three-Dimensionality of Grain Sorting.” Proceedings of Hydraulic Engineering, Japan, 46: 619–624 (in Japanese).
  • Harada, E., H. Ikari, A. Khayyer, and H. Gotoh. 2019. “Numerical Simulation for Swash Morphodynamics by DEM-MPS Coupling Model.” Coastal Engineering Journal 61 (1): 2–14. doi:10.1080/21664250.2018.1554203.
  • Harada, E., H. Ikari, T. Tazaki, and H. Gotoh. 2021. “Numerical Simulation for Coastal Morphodynamics Using DEM-MPS Method.” Applied Ocean Research 117: 102905. doi:10.1016/j.apor.2021.102905.
  • Hayashi, T., and M. Ohashi. 1982. “Turbulent Structure of Oscillatory Boundary Layers.” Journal of Japan Society of Fluid Mechanics 1 (2): 197–207.
  • Higuera, P., P. F. Liu, C. Lin, W. Y. Wong, and M. J. Kao. 2018. “Laboratory-Scale Swash Flows Generated by a Non-Breaking Solitary Wave on a Steep Slope.” Journal of Fluid Mechanics 847: 186–227. doi:10.1017/jfm.2018.321.
  • Hirakuchi, H., R. Kajima, and T. Kawaguchi. 1990. “Application of a Piston-Type Absorbing Wavemaker to Irregular Wave Experiments.” Coastal Engineering in Japan 33 (1): 11–24. doi:10.1080/05785634.1990.11924520.
  • Hoque, M. A., and T. Asano. 2007. “Numerical Study on Wave-Induced Filtration Flow Across the Beach Face and Its Effects on Swash Zone Sediment Transport.” Ocean Engineering 34 (14–15): 2033–2044. doi:10.1016/j.oceaneng.2007.02.004.
  • Ikari, H., H. Gotoh, Y. Higuchi, and N. Osada. 2020a. “Examination on Fluid-Solid Interaction Model in Particle-Based Simulation of Wave Generated by Granular Collapse.” Journal of JSCE, Series B2 (Coastal Engineering) 76: 25. in Japanese.
  • Ikari, H., T. Yamano, and H. Gotoh. 2020b. “Multiphase Particle Method Using an Elastoplastic Solid Phase Model for the Diffusion of Dumped Sand from a Split Hopper.” Computers & Fluids 208: 104639. doi:10.1016/j.compfluid.2020.104639.
  • Kazemi, E., A. Nichols, S. Tait, and S. Shao. 2017. “SPH Modelling of Depth-Limited Turbulent Open Channel Flows Over Rough Boundaries.” International Journal for Numerical Methods in Fluids 83 (1): 3–27. doi:10.1002/fld.4248.
  • Khayyer, A., and H. Gotoh. 2009. “Modified Moving Particle Semi-Implicit Methods for the Prediction of 2D Wave Impact Pressure.” Coastal Engineering 56 (4): 419–440. doi:10.1016/j.coastaleng.2008.10.004.
  • Khayyer, A., and H. Gotoh. 2010. “A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method.” Applied Ocean Research 32 (1): 124–131. doi:10.1016/j.apor.2010.01.001.
  • Khayyer, A., and H. Gotoh. 2011. “Enhancement of Stability and Accuracy of the Moving Particle Semi-Implicit Method.” Journal of Computational Physics 230 (8): 3093–3118. doi:10.1016/j.jcp.2011.01.009.
  • Khayyer, A., H. Gotoh, Y. Shimizu, K. Gotoh, H. Falahaty, and S. Shao. 2018. “Development of a Projection-Based SPH Method for Numerical Wave Flume with Porous Media of Variable Porosity.” Coastal Engineering 140: 1–22. doi:10.1016/j.coastaleng.2018.05.003.
  • Koshizuka, S., and Y. Oka. 1996. “Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid.” Nuclear Science and Engineering 123 (3): 421–434. doi:10.13182/NSE96-A24205.
  • Larson, M., and T. Sunamura. 1993. “Laboratory Experiment on Flow Characteristics at a Beach Step.” Journal of Sedimentary Research 63 (3): 495–500. doi:10.1306/D4267B36-2B26-11D7-8648000102C1865D.
  • Lo, H. Y., Y. S. Park, and P. L. F. Liu. 2013. “On the Run-Up and Back-Wash Processes of Single and Double Solitary Waves—An Experimental Study.” Coastal Engineering 80: 1–14. doi:10.1016/j.coastaleng.2013.05.001.
  • Madsen, O. S., and W. D. Grant. 1976. “Quantitative Description of Sediment Transport by Waves.” Coastal Engineering Proceedings, Honolulu, Hawaii, United States, (15): 64.
  • Ma, H., N. Mizutani, S. Eguchi, and D. Hur. 2004. “Study on Beach Profile Change and Wave Induced Velocity Field in Permeable Beach.” In Proceedings of Civil Engineering in the Ocean Japan 20: 509–514 (in Japanese).
  • Martin, C. S. 1970. “Effect of a Porous Sand Bed on Incipient Sediment Motion.” Water Resources Research 6 (4): 1162–1174. doi:10.1029/WR006i004p01162.
  • Masselink, G., and M. Hughes. 1998. “Field Investigation of Sediment Transport in the Swash Zone.” Continental Shelf Research 18 (10): 1179–1199. doi:10.1016/S0278-4343(98)00027-2.
  • Mazzuoli, M., A. G. Kidanemariam, and M. Uhlmann. 2019. “Direct Numerical Simulations of Ripples in an Oscillatory Flow.” Journal of Fluid Mechanics 863: 572–600. doi:10.1017/jfm.2018.1005.
  • Nielsen, P. 1997. “Coastal Groundwater Dynamics.” In Coastal Dynamics-Proceedings of the International Conference, USA: 546–555. ASCE.
  • Nielsen, P., S. Robert, B. Møller-Christiansen, and P. Oliva. 2001. “Infiltration Effects on Sediment Mobility Under Waves.” Coastal Engineering 42 (2): 105–114. doi:10.1016/S0378-3839(00)00051-X.
  • O’Donoghue, T., G. A. Kikkert, D. Pokrajac, N. Dodd, and R. Briganti. 2016. “Intra-Swash Hydrodynamics and Sediment Flux for Dambreak Swash on Coarse-Grained Beaches.” Coastal Engineering 112: 113–130. doi:10.1016/j.coastaleng.2016.03.004.
  • Osborne, P. D., and G. A. Rooker. 1999. “Sand Re-Suspension Events in a High Energy Infragravity Swash Zone.” Journal of Coastal Research 15: 74–86.
  • Pahar, G., and A. Dhar. 2016. “Modeling Free-Surface Flow in Porous Media with Modified Incompressible SPH.” Engineering Analysis with Boundary Elements 68: 75–85. doi:10.1016/j.enganabound.2016.04.001.
  • Peng, C., G. Xu, W. Wu, H. S. Yu, and C. Wang. 2017. “Multiphase SPH Modeling of Free Surface Flow in Porous Media with Variable Porosity.” Computers and Geotechnics 81: 239–248. doi:10.1016/j.compgeo.2016.08.022.
  • Ren, B., H. Wen, P. Dong, and Y. Wang. 2016. “Improved SPH Simulation of Wave Motions and Turbulent Flows Through Porous Media.” Coastal Engineering 107: 14–27. doi:10.1016/j.coastaleng.2015.10.004.
  • Sakai, M., Y. Shigeto, X. Sun, T. Aoki, T. Saito, J. Xiong, and S. Koshizuka. 2012. “Lagrangian-Lagrangian Modeling for a Solid-Liquid Flow in a Cylindrical Tank.” Chemical Engineering Journal 200: 663–672. doi:10.1016/j.cej.2012.06.080.
  • Sasani Babak, A., and H. Akbari. 2019. “Numerical Study of Wave Run-Up and Overtopping Considering Bed Roughness Using SPH-GPU.” Coastal Engineering Journal 61 (4): 502–519. doi:10.1080/21664250.2019.1647961.
  • Seto, S., and Y. Tajima. 2018. “Study on Behavior of Coral Gravels Under Waves Penetrating Through Coral Gravel Bed”. Journal of JSCE, Series B2 (Coastal Engineering) 74 (2): 709–714. (in Japanese).
  • Shao, S. 2010. “Incompressible SPH Flow Model for Wave Interactions with Porous Media.” Coastal Engineering 57 (3): 304–316. doi:10.1016/j.coastaleng.2009.10.012.
  • Shimizu, Y., A. Khayyer, and H. Gotoh. 2022. “An Enhanced Incompressible SPH Method for Simulation of Fluid Flow Interactions with Saturated/Unsaturated Porous Media of Variable Porosity.” Ocean Systems Engineering 12 (1): 63–86.
  • Sun, R., and H. Xiao. 2016. “SediFoam: A General-Purpose, Open-Source CFD-DEM Solver for Particle-Laden Flow with Emphasis on Sediment Transport.” Computers & Geosciences 89: 207–219. doi:10.1016/j.cageo.2016.01.011.
  • Tazaki, T., E. Harada, and H. Gotoh. 2021. “Vertical Sorting Process in Oscillating Water Tank Using DEM-MPS Coupling Model.” Coastal Engineering 165: 103765. doi:10.1016/j.coastaleng.2020.103765.
  • Tazaki, T., E. Harada, and H. Gotoh. 2022. “Numerical Investigation of Sediment Transport Mechanism Under Breaking Waves by DEM-MPS Coupling Scheme.” Coastal Engineering 175: 104146. doi:10.1016/j.coastaleng.2022.104146.
  • Tsurudome, C., D. Liang, Y. Shimizu, A. Khayyer, and H. Gotoh. 2021. “Study of Beach Permeability’s Influence on Solitary Wave Runup with ISPH Method.” Applied Ocean Research 117: 102957. doi:10.1016/j.apor.2021.102957.
  • Tsuruta, N., H. Gotoh, H. Harada, and A. Khayyer. 2017. “A Stable Solid-Liquid Multiphase Flow Simulation by Projection-Based Particle Method.” In Proceedings of the 12th SPHERIC International Workshop Ourense, Spain.
  • Tsuruta, N., H. Gotoh, K. Suzuki, H. Ikari, and K. Shimosako. 2019. “Development of PARISPHERE as the Particle-Based Numerical Wave Flume for Coastal Engineering Problems.” Coastal Engineering Journal 61 (1): 41–62. doi:10.1080/21664250.2018.1560683.
  • Tsuruta, N., A. Khayyer, and H. Gotoh. 2013. “A Short Note on Dynamic Stabilization of Moving Particle Semi-Implicit Method.” Computers & Fluids 82: 158–164. doi:10.1016/j.compfluid.2013.05.001.
  • Tsuruta, N., A. Khayyer, and H. Gotoh. 2016. “A Novel Refinement Technique for Projection-Based Particle Methods.” In Proceedings of the 11th international SPHERIC workshop Germany, 402–409.
  • Tsuruta, N., A. Khayyer, H. Gotoh, and K. Suzuki. 2021. “Development of Wavy Interface Model for Wave Generation by the Projection-Based Particle Methods.” Coastal Engineering 165: 103861. doi:10.1016/j.coastaleng.2021.103861.
  • Turner, I. L., and G. Masselink. 1998. “Swash Infiltration-Exfiltration and Sediment Transport.” Journal of Geophysical Research: Oceans 103 (C13): 30813–30824. doi:10.1029/98JC02606.
  • Wendland, H. 1995. “Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree.” Advances in Computational Mathematics 4 (1): 389–396. doi:10.1007/BF02123482.
  • Wen, C. Y., and Y. H. Yu. 1966. “Mechanics of Fluidization.” Chemical Engineering Progress Symposium Series 62: 100–111.
  • Yeh, H. H., A. Ghazali, and I. Marton. 1989. “Experimental Study of Bore Run-Up.” Journal of Fluid Mechanics 206: 563–578. doi:10.1017/S0022112089002417.
  • Zeng, L., S. Balachandar, P. Fischer, and F. Najjar. 2008. “Interactions of a Stationary Finite-Sized Particle with Wall Turbulence.” Journal of Fluid Mechanics 594: 271–305. doi:10.1017/S0022112007009056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.