172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of wave overtopping discharges at coastal structures using interpretable machine learning

ORCID Icon & ORCID Icon
Pages 433-449 | Received 04 Apr 2023, Accepted 30 Jun 2023, Published online: 11 Jul 2023

References

  • Boser, B. E., I. M. Guyon, and V. N. Vapnik. 1992. “A Training Algorithm for Optimal Margin Classifiers.” In 5th Annual ACM Workshop on COLT, edited by D. Haussler, 144–152. Pittsburg PA, USA: ACM Press.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
  • Chen, T., and C. Guestrin 2016. “XGBoost: A Scalable Tree Boosting System.” In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, ACM. 785–794.
  • Chen, W., J. J. Warmink, M. R. A. van Gent, and S. J. M. H. Hulscher. 2021. “Numerical Modelling of Wave Overtopping at Dikes Using OpenFoam®.” Coastal Engineering 166:103890. https://doi.org/10.1016/j.coastaleng.2021.103890.
  • den Bieman, J. P., M. R. A. van Gent, and H. F. P. van den Boogaard. 2021. “Wave Overtopping Predictions Using an Advanced Machine Learning Technique.” Coastal Engineering 166:103830. https://doi.org/10.1016/j.coastaleng.2020.103830.
  • den Bieman, J. P., J. M. Wilms, H. F. P. van den Boogaard, and M. R. A. van Gent. 2020. “Prediction of Mean Wave Overtopping Discharge Using Gradient Boosting Decision Trees M.S. Binici and E. Acs.” Water 12 (6): 1703. https://doi.org/10.3390/w12061703.
  • de Rouck, J., J. Geeraerts, P. Troch, A. Kortenhaus, T. Pullen, and L. Franco 2005. “New Results on Scale Effects for Wave Overtopping at Coastal Structures.” In Proceedings of the International Conference on Coastlines, Structures and Breakwaters, London, UK. 29–44.
  • EurOtop, 2018. Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application: van der Meer, J.W., Allsop, N.W.H., Bruce, T., de Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P., Zanuttigh. www.overtopping-manual.com.
  • Formentin, S. M., B. Zanuttigh, and J. W. van der Meer. 2017. “A Neural Network Tool for Predicting Wave Reflection, Overtopping and Transmission.” Coastal Engineering Journal 59 (2): 31. https://doi.org/10.1142/S0578563417500061.
  • Franco, L., J. Geeraerts, R. Briganti, M. Willems, G. Bellotti, and J. De Rouck. 2009. “Prototype Measurements and Small-Scale Model Tests of Wave Overtopping at Shallow Rubble Mound Breakwaters: The Ostia-Rome Yacht Harbour Case.” Coastal Engineering 56: 154–165.
  • Freund, Y., and R. Schapire. 1995. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.”
  • Goldstein, E. B., G. Coco, and N. G. Plant. 2019. “A Review of Machine Learning Applications to Coastal Sediment Transport and Morphodynamics.” Earth Sci Rev 194: 97–108. https://doi.org/10.1016/j.earscirev.2019.04.022.
  • Hosseinzadeh, S., A. Etemad-Shagidi, and A. Koosheh. 2021. “Prediction of Mean Wave Overtopping at Simple Sloped Breakwaters Using Kernel-Based Methods.” Journal of Hydroinformatics 23 (5): 1030. https://doi.org/10.2166/hydro.2021.046.
  • Kim, T. Y., S. C. Kwon, and Y. J. Kwon. 2021. “Prediction of Wave Transmission Characteristics of Low-Crested Structures with Comprehensive Analysis of Machine Learning.” Sensors 21 (24): 8192. https://doi.org/10.3390/s21248192.
  • Kim, T. Y., Y. J. Kwon, J. Y. Lee, E. J. Lee, and S. C. Kwon. 2022. “Wave Attenuation Prediction of Artificial Coral Reef Using Machine-Learning Integrated with Hydraulic Experiment.” Ocean Engineering 248:110324. https://doi.org/10.1016/j.oceaneng.2021.110324.
  • Koosheh, A., A. Etemad-Shahidi, N. Cartwright, R. Tomlinson, and S. Hosseinzadeh. 2020. “The Comparison of Empirical Formulae for the Prediction of Mean Wave Overtopping Rate at Armoured Sloped Structures.” Coastal Engineering Proceedings 36 (36v): 22–22. https://doi.org/10.9753/icce.v36v.structures.22.
  • Koosheh, A., A. Etemad-Shahidi, N. Cartwright, R. Tomlinson, and M. R. A. van Gent. 2021. “Individual Wave Overtopping at Coastal Structures: A Critical Review and the Existing Challenges.” Applied Ocean Research 106:102476. https://doi.org/10.1016/j.apor.2020.102476.
  • Kundapura, S., V. H. Arkal, and J. L. Pinho. 2019. “Below the Data Range Prediction of Soft Computing Wave Reflection of Semicircular Breakwater.” Journal of Marine Science and Application 18 (2): 167–175. https://doi.org/10.1007/s11804-019-00088-4.
  • Kuntoji, G., R. Manu, and R. Subba. 2018. “Prediction of Wave Transmission Over Submerged Reef of Tandem Breakwater Using PSO-SVM and PSO-ANN Techniques.” ISH Journal of Hydraulic Engineering 26 (3): 283–290. https://doi.org/10.1080/09715010.2018.1482796.
  • Lantz, B. 2015. Machine Learning with R. Birmingham, UK: Packt Publishing Ltd.
  • Lee, W. D., S. Y. Choi, T. Y. Kim, and G. S. Yeom. 2022. “Comparison of Solitary Wave Overtopping Characteristics Between Vertical and Wave Absorbing Revetments.” Ocean Engineering 256:111542. https://doi.org/10.1016/j.oceaneng.2022.111542.
  • Liang, M., Z. Chang, Z. Wan, Y. Gan, E. Schlangen, and B. Savija. 2022. “Interpretable Ensemble-Machine-Learning Models for Predicting Creep Behavior of concrete.“ Cement and Concrete Composites 125: 104295. https://doi.org/10.1016/j.cemconcomp.2021.104295.
  • Liu, P. L. F., P. Lin, K. A. Chang, and T. Sakakiyama. 1999. “Numerical Modeling of Wave Interaction with Porous Structures.” Journal of Waterway, Port, Coastal and Ocean Engineering 125 (6): 322. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322).
  • Lu, C. J., T. S. Lee, and C. C. Chiu. 2009. “Financial Time Series Forecasting Using Independent Component Analysis and Support Vector Regression.” Decision Support Systems 47 (2): 15–125. https://doi.org/10.1016/j.dss.2009.02.001.
  • Lundberg, S. M., G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, et al. 2020. “From Local Explanations to Global Understanding with Explainable AI for Trees.” Nature Machine Intelligence 2 (1): 56–67. https://doi.org/10.1038/s42256-019-0138-9.
  • Lundberg, S. A., and S. I. Lee 2017. “Unified Approach to Interpreting Model Prediction.” In 31st Conference on Neural Information Processing System (NIPS) Long Beach, CA, 1–10.
  • Lyngdoh, G. A., M. Zaki, N. M. A. Krishnan, and S. Das. 2022. “Prediction of Concrete Strengths Enabled by Missing Data Imputation and Interpretable Machine learning.“Cement and Concrete Composites 128: 104414. https://doi.org/10.1016/j.cemconcomp.2022.104414.
  • Neves, M. G., E. Didier, M. Brito, and M. Clavero. 2021. “Numerical and Physical Modelling of Wave Overtopping on a Smooth Impermeable Dike with Promenade Under Strong Incident Waves.” Journal of Marine Science and Engineering 9 (8): 865. https://doi.org/10.3390/jmse9080865.
  • Pullen, T., N. W. H. Allsop, T. Bruce, A. Kortenhaus, H. Schüttrumph, and J. W. van der Meer 2007. EurOtop – Wave Overtopping of Sea Defences and Related Structures: Assessment Manual. www.overtopping.manual.com. Die Kuste, Heft 73.
  • Pullen, T., N. W. H. Allsop, T. Bruce, J. Pearson, and J. Geeraerts 2004. “Violent Wave Overtopping at Samphire Hoe: FIeld and Laboratory Measurements.” In Proceedings of the 29t International Conference on Coastal Engineering. (ASCE) World Scientific, Singapore, 4379–4390.
  • Pu, J. H., and S. Sho. 2012. “Smoothed Particle Hydrodynamics Simulation of Wave Overtopping Characteristics for Different Coastal Structures.” Science World Journal 2012:1–10. https://doi.org/10.1100/2012/163613.
  • Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/3206.001.0001.
  • Salehi, H., and R. Burgueño. 2018. “Emerging Artificial Intelligence Methods in Structural Engineering.” Engineering Structures 171:170–189. https://doi.org/10.1016/j.engstruct.2018.05.084.
  • van der Meer, J. W., H. Verhaeghe, and G. J. Steendam. 2005. Database on Wave Overtopping at Coastal Structures, In: CLASH WP2 Database. Marknesse, The Netherlands: Infram.
  • van Gent, M. R. A., H. F. P. van den Boogaard, B. Pozueta, and J. R. Medina. 2007. “Neural Network Modeling of Wave Overtopping at Coastal Structures.” Coastal Engineering 54 (8): 586–593. https://doi.org/10.1016/j.coastaleng.2006.12.001.
  • van Steeg, P., M. de Ridder, A. Capel, and M. Bottema 2021. “Influence of Water Depth on Wave Overtopping.” In FLOODrisk 2020 - 4th European Conference on Flood Risk Management.
  • Zanuttigh, B., S. Formentin, and J. van der Meer. 2014. “Advances in Modelling Wave- Structure Interaction Through Artificial Neural Networks.” Coastal Engineering Proceedings 1 (34): 69. https://doi.org/10.9753/icce.v34.structures.69.
  • Zanuttigh, B., S. M. Formentin, and J. W. van der Meer. 2016. “Prediction of Extreme and Tolerable Wave Overtopping Discharges Through an Advanced Neural Network.” Ocean Engineering 127:7–22. https://doi.org/10.1016/j.oceaneng.2016.09.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.