214
Views
0
CrossRef citations to date
0
Altmetric
Report

A new generation of tsunami inundation maps of Chilean cities: tsunami source database and probabilistic hazard analysis

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 361-379 | Received 03 Nov 2023, Accepted 26 Feb 2024, Published online: 25 Mar 2024

References

  • Adriano, B., E. Mas, S. Koshimura, Y. Fujii, S. Yauri, C. Jimenez, and H. Yanagisawa. 2013. “Tsunami inundation mapping in lima, for two tsunami source scenarios.” Journal of Disaster Research 8 (2): 274–284. https://doi.org/10.20965/jdr.2013.p0274.
  • Allan, P., and M. Bryant. 2011. “Resilience as a Framework for Urbanism and Recovery.” Journal of Landscape Architecture 6 (2): 34–45. https://doi.org/10.1080/18626033.2011.9723453.
  • Angermann, D., J. Klotz, and C. Reigber. 1999. “Space-Geodetic Estimation of the Nazca-South America Euler Vector.” Earth and Planetary Science Letters 171 (3): 329–334. https://doi.org/10.1016/S0012-821X(99)00173-9.
  • Aránguiz, R., and P. A. Catalán. 2022. “Revisión de los métodos de análisis de la amenaza de tsunami en Chile”. In Hacia una ley de costas en Chile: bases para una gestión integrada de zonas costeras, In edited by C. Martinez, R. Cienfuegos, J. M. Barragán, S. Navarrete, R. Hidalgo, F. Arenas, and L. Fuentes, 562. Instituto de GEografia de la Pontificia Universidad Católica de Chile. https://geografia.uc.cl/destacados/2543-ya-disponible-geolibro-hacia-una-ley-de-costas-en-chile-bases-para-una-gestion-integrada-de-areas-litorales.
  • Aranguiz, R., P. A. Catálan, C. Cecioni, G. Bellotti, P. Henriquez, and J. González. 2019. “Tsunami resonance and spatial pattern of natural oscillation modes with multiple resonators.” Journal of Geophysical Research Oceans 124 (11): 7797–7816. https://doi.org/10.1029/2019jc015206.
  • Aránguiz, Rafael, G. González, J. González, P. A. Catalán, R. Cienfuegos, Y. Yagi, R. Okuwaki, et al. 2016. “The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives.” Pure and Applied Geophysics 173 (2): 333–348. https://doi.org/10.1007/s00024-015-1225-4.
  • Aránguiz, Rafael, P. Henríquez, M. Esteban, T. Mikami, R. Cienfuegos, and M. Quiroz. 2018a. “New Tsunami Hazard Assessment of Chañaral, Chile, After the Coastal Morphology Changes Due to the 2015 River Flood.” Coastal Engineering Proceedings 1 (36). https://doi.org/10.9753/icce.v36.currents.31.
  • Aránguiz, R., and T. Shibayama. 2013. “Effect of Submarine Canyons on Tsunami Propagation: A Case Study of the Biobio Canyon, Chile.” Coastal Engineering Journal 55 (4): 1350016. https://doi.org/10.1142/S0578563413500162.
  • Aránguiz, R., L. Urra, R. Okuwaki, and Y. Yagi. 2018b. “Development and Application of a Tsunami Fragility Curve of the 2015 Tsunami in Coquimbo, Chile.” Natural Hazards and Earth System Sciences 18 (8): 2143–2160. https://doi.org/10.5194/nhess-18-2143-2018.
  • ASCE. 2022. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE/SEI 7-22. Reston, VA, USA: American Society of Civil Engineers.
  • Barberopoulou, A., J. C. Borrero, B. Uslu, M. R. Legg, and C. E. Synolakis. 2011. “A Second Generation of Tsunami Inundation Maps for the State of California.” Pure and Applied Geophysics 168 (11): 2133–2146. https://doi.org/10.1007/s00024-011-0293-3.
  • Becerra, I., R. Aránguiz, J. González, and R. Benavente. 2020. “An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios.” Coastal Engineering Journal: 1–16. https://doi.org/10.1080/21664250.2020.1812943.
  • Behrens, J., F. Løvholt, F. Jalayer, S. Lorito, M. A. Salgado-Gálvez, M. Sørensen, S. Abadie, et al. 2021. “Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps.” Frontiers in Earth Science 9 (April): 1–28. https://doi.org/10.3389/feart.2021.628772.
  • Blaser, L., F. Krüger, M. Ohrnberger, and F. Scherbaum. 2010. “Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment.” Bulletin of the Seismological Society of America 100 (6): 2914–2926. https://doi.org/10.1785/0120100111.
  • Carrier, G. F., and H. P. Greenspan. 1958. “Water Waves of Finite Amplitude on a Sloping Beach.” Journal of Fluid Mechanics 4 (1): 97–109. https://doi.org/10.1017/S0022112058000331.
  • Carvajal, M., M. Cisternas, A. Gubler, P. A. Catalán, P. Winckler, and R. L. Wesson. 2017. “Reexamination of the Magnitudes for the 1906 and 1922 Chilean Earthquakes Using Japanese Tsunami Amplitudes: Implications for Source Depth Constraints.” Journal of Geophysical Research: Solid Earth 122 (1): 4–17. https://doi.org/10.1002/2016JB013269.
  • Carvajal, Matías, and A. Gubler. 2017. The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip BT - Global Tsunami Science: Past and Future, Volume I. E. L. Geist, H. M. Fritz, A. B. Rabinovich, & Y. Tanioka.edited by, 3693–3702. Springer International Publishing: https://doi.org/10.1007/978-3-319-55480-8_3.
  • Catalán, P. A., R. Aránguiz, G. González, T. Tomita, R. Cienfuegos, J. González, M. N. Shrivastava, et al. 2015. “The April 1 2014 Pisagua Tsunami : Observations and Modeling.” Geopysical Research Letters 42 (8): 2918–2925. https://doi.org/10.1002/2015GL063333.
  • Cho, Y.-S., H.-S. Hwang, J.-Y. Kim, and H.-H. Kwon. 2016. “Development of Hazard Map with Probable Maximum Tsunamis.” Journal of Coastal Research 75 (sp1): 1057–1061. https://doi.org/10.2112/SI75-212.1.
  • Cisternas, M., B. F. Atwater, F. Torrejón, Y. Sawai, G. Machuca, M. Lagos, A. Eipert, et al. 2005. “Predecessors of the Giant 1960 Chile Earthquake.” Nature 437 (7057): 404–407. https://doi.org/10.1038/nature03943.
  • Dura, T., M. Cisternas, B. P. Horton, L. L. Ely, A. R. Nelson, R. L. Wesson, and J. E. Pilarczyk. 2015. “Coastal Evidence for Holocene Subduction-Zone Earthquakes and Tsunamis in Central Chile.” Quaternary Science Reviews 113:93–111. https://doi.org/10.1016/j.quascirev.2014.10.015.
  • Fritz, H., C. Petroff, P. Catalán, R. Cienfuegos, P. Winckler, N. Kalligeris, R. Weiss, et al. 2011. “Field Survey of the 27 February 2010 Chile Tsunami.” Pure & Applied Geophysics 168 (11): 1989–2010. https://doi.org/10.1007/s00024-011-0283-5.
  • Geist, E. L., and R. Dmowska. 1999. “Local Tsunamis and Distributed Slip at the Source.” In Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones, edited by J. Sauber and R. Dmowska, 485–512. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8679-6_6.
  • Geist, E. L., and T. Parsons. 2006. “Probabilistic Analysis of Tsunami Hazards.” Natural Hazards 37 (3): 277–314. https://doi.org/10.1007/s11069-005-4646-z.
  • Goda, K. 2022. “Stochastic Source Modeling and Tsunami Simulations of Cascadia Subduction Earthquakes for Canadian Pacific Coast.” Coastal Engineering Journal 64 (4): 575–596. https://doi.org/10.1080/21664250.2022.2139918.
  • Goda, K. 2023. “Probabilistic Tsunami Hazard Analysis for Vancouver Island Coast Using Stochastic Rupture Models for the Cascadia Subduction Earthquakes.” GeoHazards 4 (3): 217–238. https://doi.org/10.3390/geohazards4030013.
  • Goda, K., T. Yasuda, N. Mori, and T. Maruyama. 2016. “New Scaling Relationships of Earthquake Source Parameters for Stochastic Tsunami Simulation.” Coastal Engineering Journal 58 (3): 1650010–1–1650010–40. https://doi.org/10.1142/s0578563416500108.
  • González, J., G. González, R. Aránguiz, D. Melgar, N. Zamora, M. N. Shrivastava, R. Das, P. A. Catalán, and R. Cienfuegos. 2020. “A Hybrid Deterministic and Stochastic Approach for Tsunami Hazard Assessment in Iquique, Chile.” Natural Hazards 100 (1): 231–254. https://doi.org/10.1007/s11069-019-03809-8.
  • Grezio, A., A. Babeyko, M. A. Baptista, J. Behrens, A. Costa, G. Davies, E. L. Geist, et al. 2017. “Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications.” Reviews of Geophysics 55 (4): 1158–1198. https://doi.org/10.1002/2017RG000579.
  • Grigoriu, M. 2009. “Reduced Order Models for Random Functions. Application to Stochastic Problems.” Applied Mathematical Modelling 33 (1): 161–175. https://doi.org/10.1016/j.apm.2007.10.023.
  • Hayes, G. P. 2017. “The Finite, Kinematic Rupture Properties of Great-Sized Earthquakes Since 1990.” Earth and Planetary Science Letters 468 (June 2016): 94–100. https://doi.org/10.1016/j.epsl.2017.04.003.
  • Hayes, G. P., G. L. Moore, D. E. Portner, M. Hearne, H. Flamme, M. Furtney, and G. M. Smoczyk. 2018. “Slab2, a comprehensive subduction zone geometry model.” Science 362 (6410): 58–61. https://doi.org/10.1126/science.aat4723.
  • Herrmann-Lunecke, M. G. 2015. “Urban Planning and Tsunami Impact Mitigation in Chile After February 27, 2010.” Natural Hazards 79 (3): 1591–1620. https://doi.org/10.1007/s11069-015-1914-4.
  • Ingram, J. C., and B. Khazai. 2012. “Incorporating Ecology and Natural Resource Management into Coastal Disaster Risk Reduction.” In Integrating Ecology and Poverty Reduction: Ecological Dimensions, edited by J.C. Ingram, F. DeClerck, and C. R. del Rio, 369–392, New York, USA: Springer.
  • JICA. 2016. Guía para la Estimación de Peligro de Tsunami. Vol. 1. Santiago, Chile: SATREPS Tsunami.
  • Kajiura, K. 1963. “Leading Wave of a Tsunami.” Bulletin of the Earthquake Research Institue 41:535–571. https://gbank.gsj.jp/ld/resource/geolis/196300724.
  • Keulegan, G. H., J. Harrison, and M. J. Mathews. 1969. Theoretics in Design of the Proposed Crescent City Harbor Tsunami Model. Vol. 69, Issue 9. Vicksburg, Mississippi, USA: Waterways Experiment Station.
  • Kramer, S. L. 1996. Geotechnical Earthquake Engineering. Upper Saddle River, NJ, USA: Prentice Hall.
  • León, J., A. Ogueda, A. Gubler, P. Catalán, M. Correa, J. Castañeda, and G. Beninati. 2023. “Increasing resilience to catastrophic near-field tsunamis: systems for capturing, modelling, and assessing vertical evacuation practices.” Natural Hazards. https://doi.org/10.1007/s11069-022-05732-x.
  • LeVeque, R. J., K. Waagan, F. I. González, D. Rim, and G. Lin. 2016. “Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment.” Pure and Applied Geophysics 173 (12): 3671–3692. https://doi.org/10.1007/s00024-016-1357-1.
  • Li, L., A. D. Switzer, C.-H. Chan, Y. Wang, R. Weiss, and Q. Qiu. 2016. “How Heterogeneous Coseismic Slip Affects Regional Probabilistic Tsunami Hazard Assessment: A Case Study in the South China Sea.” Journal of Geophysical Research: Solid Earth 121 (8): 6250–6272. https://doi.org/10.1002/2016JB013111.
  • Liu, P. L.-F., C. E. Synolakis, and H. H. Yeh. 1991. “Report on the International Workshop on Long-Wave Run-Up.” Journal of Fluid Mechanics 229 (–1): 675–688. https://doi.org/10.1017/S0022112091003221.
  • Macabuag, J., T. Rossetto, I. Ioannou, A. Suppasri, D. Sugawara, B. Adriano, F. Imamura, I. Eames, and S. Koshimura. 2016. “A Proposed Methodology for Deriving Tsunami Fragility Functions for Buildings Using Optimum Intensity Measures.” Natural Hazards 84 (2): 1257–1285. https://doi.org/10.1007/s11069-016-2485-8.
  • Mascarenhas, A., and S. Jayakumar. 2008. “An Environmental Perspective of the Post-Tsunami Scenario Along the Coast of Tamil Nadu, India: Role of Sand Dunes and Forests.” Journal of Environmental Management 89 (1): 24–34. https://doi.org/10.1016/j.jenvman.2007.01.053.
  • McCulloch, D. S. 1985. “Evaluating Tsunami Potential.” USGS Prof. Paper 1360:374–413.
  • Melgar, D., R. J. Leveque, D. S. Dreger, and R. M. Allen. 2016. “Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone.” Journal of Geophysical Research: Solid Earth 121 (9): 6658–6674. https://doi.org/10.1002/2016JB013314.
  • Melgar, D., A. L. Williamson, and E. F. Salazar-Monroy. 2019. “Differences between heterogenous and homogenous slip in regional tsunami hazards modelling.” Geophysical Journal International 219:553–562. https://doi.org/10.1093/gji/ggz299.
  • MIDEPLAN. (2013). Metodlogía de preparación y evaluación de proyectos de edificación pública. http://sni2015.ministeriodesarrollosocial.gob.cl/?wpdmdl=879.
  • MLITT. (2023). Guidelines on Designating the Assumptions of Tsunami Inundation, Ver 2.11. https://www.mlit.go.jp/river/shishin_guideline/kaigan/tsunamishinsui_manual.pdf.
  • Morales-Yáñez, C., L. Bustamante, R. Benavente, C. Sippl, and M. Moreno. 2022. “B-Value Variations in the Central Chile Seismic Gap Assessed by a Bayesian Transdimensional Approach.” Scientific Reports 12 (1): 21710. https://doi.org/10.1038/s41598-022-25338-4.
  • Naim, N. N. N., N. H. Mardi, M. A. Malek, S. Y. Teh, M. A. Wil, A. H. Shuja, and A. N. Ahmed. 2021. “Tsunami Inundation Maps for the Northwest of Peninsular Malaysia and Demarcation of Affected Electrical Assets.” Environmental Monitoring and Assessment 193 (7): 405. https://doi.org/10.1007/s10661-021-09179-8.
  • Núñez, I., R. Boroschek, D. Comte, and V. Contreras. 2015. “Nuevo peligro sísmico para chile.” XI COngreso Chileno de Sismologia e Ingeniería Sísmica ACHISINA 2015 189. https://www.researchgate.net/publication/318085603_NUEVO_PELIGRO_SISMICO_PARA_CHILE.
  • Okada, Y. 1985. “Surface Deformation Due to Shear and Tensile Faults in a Half Space.” Bulletin of the Seismological Society of America 75 (4): 1135–1154. https://doi.org/10.1785/BSSA0750041135.
  • Oleskevich, D. A., R. D. Hyndman, and K. Wang. 1999. “The Updip and Downdip Limits to Great Subduction Earthquakes: Thermal and Structural Models of Cascadia, South Alaska, SW Japan, and Chile.” Journal of Geophysical Research 104 (B7): 14965–14991. https://doi.org/10.1029/1999JB900060.
  • Perera, U. T. G., C. De Zoysa, A. A. S. E. Abeysinghe, R. Haigh, D. Amaratunga, and R. Dissanayake. 2022. “A Study of Urban Planning in Tsunami-Prone Areas of Sri Lanka.” Architecture 2 (3): 562–592. https://doi.org/10.3390/architecture2030031.
  • Poulos, A., M. Monsalve, N. Zamora, and J. C. de la Llera. 2018. “An Updated Recurrence Model for Chilean Subduction Seismicity and Statistical Validation of Its Poisson Nature.” Bulletin of the Seismological Society of America 109 (1): 66–74. https://doi.org/10.1785/0120170160.
  • Saillard, M., L. Audin, B. Rousset, J. P. Avouac, M. Chlieh, S. R. Hall, L. Husson, and D. L. Farber. 2017. “From the Seismic Cycle to Long-Term Deformation: Linking Seismic Coupling and Quaternary Coastal Geomorphology Along the Andean Megathrust.” Tectonics 36 (2): 241–256. https://doi.org/10.1002/2016TC004156.
  • Salazar, D., G. Easton, J. Goff, J. L. Guendon, J. González-Alfaro, P. Andrade, X. Villagrán, et al. 2022. “Did a 3800-Year-Old Mw ~9.5 Earthquake Trigger Major Social Disruption in the Atacama Desert?” Science Advances 8 (14). https://doi.org/10.1126/sciadv.abm2996.
  • Sepúlveda, I., P. L.-F. Liu, and M. Grigoriu. 2019. “Probabilistic Tsunami Hazard Assessment in South China Sea with Consideration of Uncertain Earthquake Characteristics.” Journal of Geophysical Research: Solid Earth 124 (1): 658–688. https://doi.org/10.1029/2018JB016620.
  • Sepúlveda, I., P. L. F. Liu, M. Grigoriu, J. S. Haase, and P. Winckler. 2022. “Non-Stationary Probabilistic Tsunami Hazard Assessments Compounding Tides and Sea Level Rise.” Earth’s Future 10 (11): 1–18. https://doi.org/10.1029/2022EF002965.
  • Sepúlveda, I., P. L. F. Liu, M. Grigoriu, and M. Pritchard. 2017. “Tsunami Hazard Assessments with Consideration of Uncertain Earthquake Slip Distribution and Location.” Journal of Geophysical Research: Solid Earth 122 (9): 7252–7271. https://doi.org/10.1002/2017JB014430.
  • SHOA. 2015. Pub. SHOA N° 3204: Instrucciones Oceanográficas N°4, “Especificaciones Técnicas para la Elaboración de Cartas de Inundación pot Tsunami (CITSU)”. 1st ed. Servicio Hidrográfico y Oceanográfico de la Armada de Chile. http://www.shoa.cl/s3/datos/descargas/pdf/pub3204_old.pdf.
  • Shuto, N., and K. Fujima. 2009. “A Short History of Tsunami Research and Countermeasures in Japan.” Proceedings of the Japan Academy Series B: Physical and Biological Sciences 85 (8): 267–275. https://doi.org/10.2183/pjab.85.267.
  • Silva, V., H. Crowley, M. Pagani, D. Monelli, and R. Pinho. 2014. “Development of the OpenQuake Engine, the Global Earthquake Model’s Open-Source Software for Seismic Risk Assessment.” Natural Hazards 72 (3): 1409–1427. https://doi.org/10.1007/s11069-013-0618-x.
  • Solís, I. A., and P. Gazmuri. 2017. “Evaluation of the Risk and the Evacuation Policy in the Case of a Tsunami in the City of Iquique, Chile.” Natural Hazards 88 (1): 503–532. https://doi.org/10.1007/s11069-017-2876-5.
  • Suleimani, E. N., J. B. Salisbury, and D. J. Nicolsky. 2022. “Updated Tsunami Inundation Maps for Karluk and Larsen Bay, Kodiak Island, Alaska.” https://doi.org/10.14509/30892.
  • Vicuña, M., J. León, and S. Guzmán. 2022. “Urban Form Planning and Tsunami Risk Vulnerability: Analysis of 12 Chilean Coastal Cities.” Environment and Planning B: Urban Analytics and City Science 49 (7): 1967–1979. https://doi.org/10.1177/23998083221075635.
  • Villagra, P., M. G. Herrmann, C. Quintana, and R. D. Sepúlveda. 2017. “Community Resilience to Tsunamis Along the Southeastern Pacific: A Multivariate Approach Incorporating Physical, Environmental, and Social Indicators.” Natural Hazards 88 (2): 1087–1111. https://doi.org/10.1007/s11069-017-2908-1.
  • Walker, B., and D. Salt. 2006. Resilience Thinking: Sustaining Ecosystems and People in a Changing World. Washington, DC, USA: Island press.
  • Yamazaki, Yoshiki, and K. F. Cheung. 2011. “Shelf Resonance and Impact of Near-Field Tsunami Generated by the 2010 Chile Earthquake.” Geophysical Research Letters 38 (12). https://doi.org/10.1029/2011GL047508.
  • Yamazaki, Y., T. Lay, K. F. Cheung, H. Yue, and H. Kanamori. 2011. “Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake.” Geophysical Research Letters 38 (7): n/a–n/a. https://doi.org/10.1029/2011GL049130.
  • Zamora, N., P. A. Catalán, A. Gubler, and M. Carvajal. 2021. “Microzoning Tsunami Hazard by Combining Flow Depths and Arrival Times.” Frontiers in Earth Science 8 (April): 1–18. https://doi.org/10.3389/feart.2020.591514.
  • Zamora, N., A. Gubler, V. Orellana, J. León, A. Urrutia, M. Carvajal, M. Cisternas, et al. 2020. “The 1730 Great Metropolitan Chile Earthquake and Tsunami Commemoration: Joint Efforts to Increase the country’s Awareness.” Geosciences 10 (6): 1–15. https://doi.org/10.3390/geosciences10060246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.