1,231
Views
2
CrossRef citations to date
0
Altmetric
Addendum

Macrophage migration inhibitory factor as a component of selective vulnerability of motor neurons in ALS

&
Article: e1061164 | Received 27 Apr 2015, Accepted 05 Jun 2015, Published online: 24 Jul 2015

References

  • Costa J, Gomes C, de Carvalho M. Diagnosis, pathogenesis and therapeutic targets in amyotrophic lateral sclerosis. CNS Neurol Disord Drug Targets 2010; 9:764-78; PMID:20942786; http://dx.doi.org/10.2174/187152710793237502
  • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993 364:362; PMID:8332197; http://dx.doi.org/10.1038/364362c0
  • Furukawa Y, Kaneko K, Yamanaka K, O'Halloran TV, Nukina N. Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 2008; 283:24167-76; PMID:18552350; http://dx.doi.org/10.1074/jbc.M802083200
  • Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 2002; 10:128-38; PMID:12127151; http://dx.doi.org/10.1006/nbdi.2002.0498
  • Chia R, Tattum MH, Jones S, Collinge J, Fisher EM, Jackson GS. Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS One 2010; 5:e10627; PMID:20498711; http://dx.doi.org/10.1371/journal.pone.0010627
  • Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009; 187:761-72; PMID:19951898; http://dx.doi.org/10.1083/jcb.200908164
  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995; 38:73-84; PMID:7611729; http://dx.doi.org/10.1002/ana.410380114
  • Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 2006; 9:108-18; PMID:16369483; http://dx.doi.org/10.1038/nn1603.
  • Harraz MM, Marden JJ, Zhou W, Zhang Y, Williams A, Sharov VS, Nelson K, Luo M, Paulson H, Schoneich C. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 2008; 118:659-70; PMID:18219391
  • Fujisawa T, Homma K, Yamaguchi N, Kadowaki H, Tsuburaya N, Naguro I, Matsuzawa A, Takeda K, Takahashi Y, Goto J, Tsuji S, Nishitoh H, Ichijo H. A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosis-linked SOD1 mutants. Ann Neurol 2012; 72:739-49; PMID:23280792; http://dx.doi.org/10.1002/ana.23668
  • Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 2008; 22:1451-64; PMID:18519638; http://dx.doi.org/10.1101/gad.1640108
  • Beretta S, Sala G, Mattavelli L, Ceresa C, Casciati A, Ferri A, Carri MT, Ferrarese C, Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis 2003; 13:213-21; PMID:12901835; http://dx.doi.org/10.1016/S0969-9961(03)00043-3
  • Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G, Expression of a Cu,Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 1997; 414:365-8; PMID:9315720; http://dx.doi.org/10.1016/S0014-5793(97)01051-X
  • Damiano M, Starkov AA, Petri S, Kipiani K, Kiaei M, Mattiazzi M, Flint Beal M, Manfredi G Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 2006; 96:1349-61; PMID:16478527; http://dx.doi.org/10.1111/j.1471-4159.2006.03619.x
  • Hervias I, Beal MF, Manfredi G, Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 2006; 33:598-608; PMID:16372325; http://dx.doi.org/10.1002/mus.20489
  • Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, Subramaniam JR, Rothstein JD, Marklund S, Andersen PM, et.al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 2004; 43:5-17; PMID:15233913; http://dx.doi.org/10.1016/j.neuron.2004.06.016
  • Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005; 5:77-87; PMID:16050975; http://dx.doi.org/10.1016/j.mito.2005.01.002
  • Mattiazzi M, D'Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 2002; 277:29626-33; PMID:12050154; http://dx.doi.org/10.1074/jbc.M203065200
  • Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZM, Dong L, Figlewicz DA, Shaw PJ. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 2002; 125:1522-33; PMID:12077002; http://dx.doi.org/10.1093/brain/awf167
  • Vande Velde C, Miller TM, Cashman NR, Cleveland DW, Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci U S A 2008; 105:4022-7; PMID:18296640; http://dx.doi.org/10.1073/pnas.0712209105
  • Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, et.al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 2008; 28:4115-22; PMID:18417691; http://dx.doi.org/10.1523/JNEUROSCI.5308-07.2008
  • Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR, Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 2008; 107:1271-83; PMID:18808448; http://dx.doi.org/10.1111/j.1471-4159.2008.05699.x
  • Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-Barmatz V, Cleveland DW. Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron 2010; 67:575-87; PMID:20797535; http://dx.doi.org/10.1016/j.neuron.2010.07.019
  • Li Q, Vande Velde C, Israelson A, Xie J, Bailey AO, Dong MQ, Chun SJ, Roy T, Winer L, Yates JR, et.al. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci U S A 2010; 107:21146-51; PMID:21078990; http://dx.doi.org/10.1073/pnas.1014862107
  • Grad LI, Cashman NR. Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Prion 2014; 8:33-41; PMID:24394345; http://dx.doi.org/10.4161/pri.27602
  • Munch C, O'Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 2011; 108:3548-53; PMID:21321227; http://dx.doi.org/10.1073/pnas.1017275108
  • Israelson A, Ditsworth D, Sun S, Song S, Liang J, Hruska-Plochan M, McAlonis-Downes M, Abu-Hamad S, Zoltsman G, Shani T, et.al. Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1. Neuron 2015; 86:218-32; PMID:25801706; http://dx.doi.org/10.1016/j.neuron.2015.02.034
  • Cherepkova OA, Lyutova EM, Eronina TB, Gurvits BY. Chaperone-like activity of macrophage migration inhibitory factor. Int J Biochem Cell Biol 2006; 38:43-55; PMID:16099194; http://dx.doi.org/10.1016/j.biocel.2005.07.001
  • George M, Vaughan JH. In vitro cell migration as a model for delayed hypersensitivity. Proc Soc Exp Biol Med 1962; 111:514-21; PMID:13947220; http://dx.doi.org/10.3181/00379727-111-27841
  • Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3:791-800; PMID:14502271; http://dx.doi.org/10.1038/nri1200
  • Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966; 153:80-2; PMID:5938421; http://dx.doi.org/10.1126/science.153.3731.80
  • David JR. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A 1966; 56:72-7; PMID:5229858; http://dx.doi.org/10.1073/pnas.56.1.72
  • Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, Fan J, Lue H, Chen Y, Xiong H, et.al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci U S A 2011; 108:E577-85; PMID:21817065; http://dx.doi.org/10.1073/pnas.1102941108
  • Bacher M, Meinhardt A, Lan HY, Mu W, Metz CN, Chesney JA, Calandra T, Gemsa D, Donnelly T, Atkins RC, et.al. Migration inhibitory factor expression in experimentally induced endotoxemia. Am J Pathol 1997; 150:235-46; PMID:9006339
  • Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R, MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993; 365:756-9; PMID:8413654; http://dx.doi.org/10.1038/365756a0
  • Fingerle-Rowson G, Koch P, Bikoff R, Lin X, Metz CN, Dhabhar FS, Meinhardt A, Bucala R. Regulation of macrophage migration inhibitory factor expression by glucocorticoids in vivo. Am J Pathol 2003; 162:47-56; PMID:12507889; http://dx.doi.org/10.1016/S0002-9440(10)63797-2
  • Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995; 377:68-71; PMID:7659164; http://dx.doi.org/10.1038/377068a0
  • Leng L, Wang W, Roger T, Merk M, Wuttke M, Calandra T, Bucala R. Glucocorticoid-induced MIF expression by human CEM T cells. Cytokine 2009; 48:177-85; PMID:19646897; http://dx.doi.org/10.1016/j.cyto.2009.07.002
  • Merk M, Baugh J, Zierow S, Leng L, Pal U, Lee SJ, Ebert AD, Mizue Y, Trent JO, Mitchell R, et.al. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. J Immunol 2009; 182:6896-906; PMID:19454686; http://dx.doi.org/10.4049/jimmunol.0803710
  • Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197:1467-76; PMID:12782713; http://dx.doi.org/10.1084/jem.20030286
  • Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, et.al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 2006; 25:595-606; PMID:17045821; http://dx.doi.org/10.1016/j.immuni.2006.08.020
  • Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc Natl Acad Sci U S A 2008; 105:16278-83; PMID:18852457; http://dx.doi.org/10.1073/pnas.0804017105
  • Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, et.al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 2007; 13:587-96; PMID:17435771; http://dx.doi.org/10.1038/nm1567
  • Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, Wright SD, Whitman CP. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry 1999; 38:12841-9; PMID:10504254; http://dx.doi.org/10.1021/bi991352p
  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5:49-55; PMID:9883839; http://dx.doi.org/10.1038/4734
  • Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9:268-75; PMID:16415867; http://dx.doi.org/10.1038/nn1629
  • Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 2008; 105:15558-63; PMID:18809917; http://dx.doi.org/10.1073/pnas.0807419105
  • Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, Brown RH, Jr, Carroll MC. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 2008; 105:17913-8; http://dx.doi.org/10.1073/pnas.0804610105
  • Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, et.al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003; 100:4790-5; PMID:12668759; http://dx.doi.org/10.1073/pnas.0530191100
  • Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, Liao B, Appel SH. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011; 134:1293-314; PMID:21596768; http://dx.doi.org/10.1093/brain/awr074
  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006; 103:16021-6; PMID:17043238; http://dx.doi.org/10.1073/pnas.0607423103
  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW. Onset and progression in inherited ALS determined by motor neurons and microglia. Science2006; 312:1389-92; PMID:16741123; http://dx.doi.org/10.1126/science.1123511
  • Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 2008; 105:7594-9; PMID:18492803; http://dx.doi.org/10.1073/pnas.0802556105
  • Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, et.al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 2011; 29:824-8; PMID:21832997; http://dx.doi.org/10.1038/nbt.1957.
  • Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007; 10:608-14; PMID:17435754; http://dx.doi.org/10.1038/nn1885
  • Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH, Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 2008; 3:649-57; PMID:19041781; http://dx.doi.org/10.1016/j.stem.2008.10.001
  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007; 10:615-22; PMID:17435755; http://dx.doi.org/10.1038/nn1876
  • Grad LI, Cashman NR. Prion-like activity of Cu/Zn superoxide dismutase: Implications for amyotrophic lateral sclerosis. Prion .2014; 8; 33-41
  • Grad LI, Guest WC, Yanai A, Pokrishevsky E, O'Neill MA, Gibbs E, Semenchenko V, Yousefi M, Wishart DS, Plotkin SS, Cashman NR. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci U S A 2011; 108:16398-403; PMID:21930926; http://dx.doi.org/10.1073/pnas.1102645108
  • Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, Li F, Xu Z, Bowser R, Xia XG, Zhou H. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A 2013110:4069-74; PMID:23431168; http://dx.doi.org/10.1073/pnas.1218497110
  • Yu X, Lin SG, Huang XR, Bacher M, Leng L, Bucala R, Lan HY. Macrophage migration inhibitory factor induces MMP-9 expression in macrophages via the MEK-ERK MAP kinase pathway. J Interferon Cytokine Res 2007; 27:103-9; PMID:17316137; http://dx.doi.org/10.1089/jir.2006.0054
  • Kaplan A, Spiller KJ, Towne C, Kanning KC, Choe GT, Geber A, Akay T, Aebischer P, Henderson CE. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 2014; 81:333-48; PMID:24462097; http://dx.doi.org/10.1016/j.neuron.2013.12.009