1,828
Views
11
CrossRef citations to date
0
Altmetric
Addendum

The calpain-suppressing effects of olesoxime in Huntington's disease

, , , &
Article: e1153778 | Received 02 Dec 2015, Accepted 04 Feb 2016, Published online: 06 Apr 2016

References

  • Bordet T, Buisson B, Michaud M, Drouot C, Galéa P, Delaage P, Akentieva NP, Evers AS, Covey DF, Ostuni M A, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther [Internet] 2007; 322:709-20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17496168; PMID:17496168; http://dx.doi.org/10.1124/jpet.107.123000
  • Bordet T, Berna P, Abitbol JL, Pruss RM. Olesoxime (TRO19622): A novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals 2010; 3:345-68; http://dx.doi.org/10.3390/ph3020345
  • Colombini M. VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256-257:107-15; PMID:14977174
  • Gatliff J, Campanella M. The 18 kDa translocator protein (TSPO): a new perspective in mitochondrial biology. Curr Mol Med 2012; 12:356-68; PMID:22364127
  • Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 2008; 40:199-205; PMID: 18670869; http://dx.doi.org/10.1007/s10863-008-9142-1
  • Gouarné C, Tracz J, Paoli MG, Deluca V, Seimandi M, Tardif G, Xilouri M, Stefanis L, Bordet T, Pruss RM. Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells. Br J Pharmacol [Internet] 2015; 172:235-45. Available from: http://doi.wiley.com/10.1111/bph.12939; PMID: 25220617; http://dx.doi.org/10.1111/bph.12939
  • Gouarné C, Giraudon-Paoli M, Seimandi M, Biscarrat C, Tardif G, Pruss RM, Bordet T. Olesoxime protects embryonic cortical neurons from camptothecin intoxication by a mechanism distinct from BDNF. Br J Pharmacol 2013; 168:1975-88; PMID:23278424; http://dx.doi.org/10.1111/bph.12094
  • Rovini A, Carré M, Bordet T, Pruss RM, Braguer D. Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol 2010; 80:884-94; PMID:20417191; http://dx.doi.org/10.1016/j.bcp.2010.04.018
  • Magalon K, Zimmer C, Cayre M, Khaldi J, Bourbon C, Robles I, Tardif G, Viola A, Pruss RM, Bordet T, et al. Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann Neurol 2012; 71:213-26; PMID:22367994; http://dx.doi.org/10.1002/ana.22593
  • Sunyach C, Michaud M, Arnoux T, Bernard-Marissal N, Aebischer J, Latyszenok V, Gouarné C, Raoul C, Pruss RM, Bordet T, et al. Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology 2012; 62:2346-52; PMID:22369784; http://dx.doi.org/10.1016/j.neuropharm.2012.02.013
  • Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, et al. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014; 69:263-75; PMID:24844147; http://dx.doi.org/10.1016/j.nbd.2014.05.012
  • Bordet T, Buisson B, Michaud M, Abitbol J-L, Marchand F, Grist J, Andriambeloson E, Malcangio M, Pruss RM. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J Pharmacol Exp Ther 2008; 326:623-32; PMID:18492948; http://dx.doi.org/10.1124/jpet.108.139410
  • Xiao WH, Zheng FY, Bennett GJ, Bordet T, Pruss RM. Olesoxime (cholest-4-en-3-one, oxime): analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain 2009; 147:202-9; PMID:19833436; http://dx.doi.org/10.1016/j.pain.2009.09.006
  • Xiao WH, Zheng H, Bennett GJ. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 2012; 203:194-206; PMID:22200546; http://dx.doi.org/10.1016/j.neuroscience.2011.12.023
  • Lenglet T, Lacomblez L, Abitbol JL, Ludolph a., Mora JS, Robberecht W, Shaw PJ, Pruss RM, Cuvier V, Meininger V. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol 2014; 21:529-36; PMID:24447620; http://dx.doi.org/10.1111/ene.12344
  • Dessaud E, Carole A, Bruno S, Patrick B, Rebecca P, Cuvier V, Hauke W, Enrico B, Mcdonald C, Watson C, et al. A Phase II study to assess safety and efficacy of olesoxime (TRO19622) in 3-25 year-old Spinal Muscular Atrophy (SMA) patients. Neurol Emerg Abstr 2014; 83:e34-40
  • Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, Strand A, Tarditi A, Woodman B, Racchi M, et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. J Neurosci 2005; 25:9932-9; PMID:16251441; http://dx.doi.org/10.1523/JNEUROSCI.3355-05.2005
  • Browne SE. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models. Ann N Y Acad Sci 2008; 1147:358-82; PMID:19076457; http://dx.doi.org/10.1196/annals.1427.018
  • Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J, Weiss A, Magg JCD, et al. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 2015; 138:3632-53; http://dx.doi.org/10.1093/brain/awv290
  • Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF, et al. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 2000; 9:503-13; PMID:10699173; http://dx.doi.org/10.1093/hmg/9.4.503
  • Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp a H, Persichetti F, Cattaneo E, MacDonald ME. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 2000; 9:2799-809; PMID:11092756; http://dx.doi.org/10.1093/hmg/9.19.2799
  • Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, et al. Mitochondrial membrane fluidity is consistently increased in different models of huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18; PMID:24633813
  • Menalled LB. Knock-in mouse models of Huntington's disease. NeuroRx 2005; 2:465-70; PMID:16389309; http://dx.doi.org/10.1602/neurorx.2.3.465
  • Brustovetsky N, LaFrance R, Purl KJ, Brustovetsky T, Keene CD, Low WC, Dubinsky JM. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease. J Neurochem 2005; 93:1361-70; PMID:15935052; http://dx.doi.org/10.1111/j.1471-4159.2005.03036.x
  • Yu-Taeger L, Petrasch-Parwez E, Osmand AP, Redensek A, Metzger S, Clemens LE, Park L, Howland D, Calaminus C, Gu X, et al. A novel BACHD transgenic rat exhibits characteristic neuropathological features of huntington disease. J Neurosci 2012; 32:15426-38; PMID:23115180; http://dx.doi.org/10.1523/JNEUROSCI.1148-12.2012
  • Jansson EKH, Clemens LE, Riess O, Nguyen HP. Reduced motivation in the BACHD rat model of huntington disease is dependent on the choice of food deprivation strategy. PLoS One 2014; 9:e105662; PMID:25144554; http://dx.doi.org/10.1371/journal.pone.0105662
  • Abràmoff MD, Magalhães PJ, Sunanda J. Image processing with ImageJ. Biophotonics Int 2004; 11:36-42.