1,594
Views
4
CrossRef citations to date
0
Altmetric
Addendum

SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome

, &
Article: e1195050 | Received 03 Mar 2016, Accepted 24 May 2016, Published online: 21 Jun 2016

References

  • Shprintzen RJ, Higgins AM, Antshel K, Fremont W, Roizen N, Kates W. Velo-cardio-facial syndrome. Curr Opin Pediatr 2005; 17:725-30; PMID:16282778; http://dx.doi.org/10.1097/01.mop.0000184465.73833.0b
  • Scambler PJ. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010; 31:378-90; PMID:20054531; http://dx.doi.org/10.1007/s00246-009-9613-0
  • Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, Bradley A, Baldini A. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401:379-83; PMID:10517636
  • Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001; 27:286-91; PMID:11242110; http://dx.doi.org/10.1038/85845
  • Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001; 104:619-29; PMID:11239417; http://dx.doi.org/10.1016/S0092-8674(01)00247-1
  • Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410:97-101; PMID:11242049; http://dx.doi.org/10.1038/35065105
  • Zhang Z, Baldini A. In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 2008; 17:150-7; PMID:17916582; http://dx.doi.org/10.1093/hmg/ddm291
  • Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, et al. Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 2005; 132:5307-15; PMID:16284121; http://dx.doi.org/10.1242/dev.02086
  • Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 2006; 133:3587-95; PMID:16914493; http://dx.doi.org/10.1242/dev.02539
  • Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM, Morrow BE. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 2006; 133:977-87; PMID:16452092; http://dx.doi.org/10.1242/dev.02264
  • Yamagishi H, Srivastava D. Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends Mol Med 2003; 9:383-9; PMID:13129704; http://dx.doi.org/10.1016/S1471-4914(03)00141-2
  • Epstein JA. Developing models of Digeorge syndrome. Trends Genet 2001; 17:S13-S7; PMID:11585671; http://dx.doi.org/10.1016/S0168-9525(01)02450-7
  • Hutson MR, Kirby ML. Model systems for the study of heart development and disease: cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 2007; 18:101-10; PMID:17224285; http://dx.doi.org/10.1016/j.semcdb.2006.12.004
  • Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 2001; 235:62-73; PMID:11412027; http://dx.doi.org/10.1006/dbio.2001.0283
  • Kochilas L, Merscher-Gomez S, Lu MM, Potluri V, Liao J, Kucherlapati R, Morrow B, Epstein JA. The role of neural crest during cardiac development in a mouse model of DiGeorge syndrome. Develop Biol 2002; 251:157-66; PMID:12413905; http://dx.doi.org/10.1006/dbio.2002.0819
  • Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, et al. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 2009; 136:3173-83; PMID:19700621; http://dx.doi.org/10.1242/dev.028902
  • Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 2002; 11:915-22; PMID:11971873; http://dx.doi.org/10.1093/hmg/11.8.915
  • Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A. A genetic link between Tbx1 and fibroblast growth factor signaling. Development 2002; 129:4605-11; PMID:12223416
  • Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129:4613-25; PMID:12223417
  • Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 2002; 129:4591-603; PMID:12223415
  • Sato A, Scholl AM, Kuhn EN, Stadt HA, Decker JR, Pegram K, Hutson MR, Kirby ML. FGF8 signaling is chemotactic for cardiac neural crest cells. Dev Biol 2011; 354:18-30; PMID:21419761; http://dx.doi.org/10.1016/j.ydbio.2011.03.010
  • McLennan R, Teddy JM, Kasemeier-Kulesa JC, Romine MH, Kulesa PM. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol 2010; 339:114-25; PMID:20036652; http://dx.doi.org/10.1016/j.ydbio.2009.12.022
  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: New rules for an old road. Dev Biol 2010:534-554; PMID:21146519
  • Kasemeier-Kulesa JC, McLennan R, Romine MH, Kulesa PM, Lefcort F. CXCR4 controls ventral migration of sympathetic precursor cells. J Neurosci 2010; 30:13078-88; PMID:20881125; http://dx.doi.org/10.1523/JNEUROSCI.0892-10.2010
  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA. Impaired B-lymphopoieisis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF1-deficient mice. Proc Natl Acad Sci USA 1998; 95:9448-53
  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393:595-9; PMID:9634238; http://dx.doi.org/10.1038/31269
  • Meechan DW, Tucker ES, Maynard TM, LaMantia AS. Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proc Natl Acad Sci U S A 2012; 109:18601-6; PMID:23091025; http://dx.doi.org/10.1073/pnas.1211507109
  • Toritsuka M, Kimoto S, Muraki K, Landek-Salgado MA, Yoshida A, Yamamoto N, Horiuchi Y, Hiyama H, Tajinda K, Keni N, et al. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model. Proc Natl Acad Sci U S A 2013; 110:17552-7; PMID:24101523; http://dx.doi.org/10.1073/pnas.1312661110
  • Castellanos R, Xie Q, Zheng D, Cvekl A, Morrow BE. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat. PLoS One 2014; 9:e95151; PMID:24797903; http://dx.doi.org/10.1371/journal.pone.0095151
  • Escot S, Blavet C, Hartle S, Duband JL, Fournier-Thibault C. Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res 2013; 113:505-16; PMID:23838132; http://dx.doi.org/10.1161/CIRCRESAHA.113.301333
  • Escot S, Blavet C, Faure E, Zaffran S, Duband JL, Fournier-Thibault C. Disruption of CXCR4 signaling in pharyngeal neural crest cells causes DiGeorge syndrome-like malformations. Development 2016; 143:582-8; PMID:26755698; http://dx.doi.org/10.1242/dev.126573
  • van Bueren KL, Papangeli I, Rochais F, Pearce K, Roberts C, Calmont A, Szumska D, Kelly RG, Bhattacharya S, Scambler PJ. Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 2010; 340:369-80; PMID:20122914; http://dx.doi.org/10.1016/j.ydbio.2010.01.020
  • Yamagishi H, Maeda J, Hu T, McAnally J, Conway SJ, Kume T, Meyers EN, Yamagishi C, Srivastava D. Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 2003; 17:269-81; PMID:12533514; http://dx.doi.org/10.1101/gad.1048903
  • Katoh M, Katoh M. Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int J Oncol 2010; 36:415-20; PMID:20043076
  • Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 2006; 133:2419-33; PMID:16720879; http://dx.doi.org/10.1242/dev.02367
  • Vitelli F, Zhang Z, Huynh T, Sobotka A, Mupo A, Baldini A. Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Dev Biol 2006; 295:559-70; PMID:16696966; http://dx.doi.org/10.1016/j.ydbio.2006.03.044
  • Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA, LaMantia AS. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech 2014; 7:245-57; PMID:24357327; http://dx.doi.org/10.1242/dmm.012484
  • Farrell MJ, Stadt H, Wallis KT, Scambler P, Hixon RL, Wolfe R, Leatherbury L, Kirby ML. HIRA, a DiGeorge syndrome candidate gene, is required for cardiac outflow tract septation. Circ Res 1999; 84:127-35; PMID:9933243; http://dx.doi.org/10.1161/01.RES.84.2.127
  • Yamagishi C, Hierck BP, Gittenberger-De Groot AC, Yamagishi H, Srivastava D. Functional attenuation of UFD1l, a 22q11.2 deletion syndrome candidate gene, leads to cardiac outflow septation defects in chicken embryos. Pediatr Res 2003; 53:546-53; PMID:12612215; http://dx.doi.org/10.1203/01.PDR.0000055765.11310.E3
  • Hierck BP, Molin DG, Boot MJ, Poelmann RE, Gittenberger-de Groot AC. A chicken model for DGCR6 as a modifier gene in the DiGeorge critical region. Pediatr Res 2004; 56:440-8; PMID:15333760; http://dx.doi.org/10.1203/01.PDR.0000136151.50127.1C