1,984
Views
20
CrossRef citations to date
0
Altmetric
Addendum

Neurodevelopmental models of transcription factor 4 deficiency converge on a common ion channel as a potential therapeutic target for Pitt Hopkins syndrome

, , , , &
Article: e1220468 | Received 01 Jun 2016, Accepted 28 Jul 2016, Published online: 30 Aug 2016

Bibliography

  • Brockschmidt A, Filippi A, Charbel Issa P, Nelles M, Urbach H, Eter N, Driever W, Weber RG. Neurologic and ocular phenotype in Pitt-Hopkins syndrome and a zebrafish model. Hum. Genet 2011; 130:645-55; PMID:21544580
  • Zweier C, Sticht H, Bijlsma EK, Clayton-Smith J, Boonen SE, Fryer A, Greally MT, Hoffmann L, den Hollander NS, Jongmans M, et al. Further delineation of Pitt-Hopkins syndrome: phenotypic and genotypic description of 16 novel patients. J Med Genet 2008; 45:738-44; PMID:18728071
  • Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 2007; 80:988-93; PMID:17436254; http://dx.doi.org/10.1086/515582
  • Sepp M, Pruunsild P, Timmusk T. Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum Mol Genet 2012; 21:2873-88; PMID:22460224; http://dx.doi.org/10.1093/hmg/dds112
  • Whalen S, Héron D, Gaillon T, Moldovan O, Rossi M, Devillard F, Giuliano F, Soares G, Mathieu-Dramard M, Afenjar A, et al. Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: Clinical score and further delineation of the TCF4 mutational spectrum. Hum Mutat 2011; 33:64-72; PMID:22045651; http://dx.doi.org/10.1002/humu.21639
  • Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ. Functional analysis of TCF4 missense mutations that cause Pitt-Hopkins syndrome. Hum Mutat 2012; 33:1676-86; PMID:22777675; http://dx.doi.org/10.1002/humu.22160
  • Sweatt JD. Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 2013; 45:e21; PMID:23640545; http://dx.doi.org/10.1038/emm.2013.32
  • Soileau B, Hasi M, Sebold C, Hill A, O'Donnell L, Hale DE, Cody JD. Adults with chromosome 18 abnormalities. J Genet Couns 2014; 24:663-74; PMID:25403900; http://dx.doi.org/10.1007/s10897-014-9793-5
  • Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43:969-76; PMID:21926974; http://dx.doi.org/10.1038/ng.940
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511:421-7; PMID:25056061; http://dx.doi.org/10.1038/nature13595
  • Quednow BB, Ettinger U, Mössner R, Rujescu D, Giegling I, Collier DA, Schmechtig A, Kühn KU, Möller HJ, Maier W, et al. The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci 2011; 31:6684-91; PMID:21543597; http://dx.doi.org/10.1523/JNEUROSCI.0526-11.2011
  • Zhu X, Gu H, Liu Z, Xu Z, Chen X, Sun X, Zhai J, Zhang Q, Chen M, Wang K, et al. Associations between TCF4 gene polymorphism and cognitive functions in schizophrenia patients and healthy controls. Neuropsychopharmacology 2013; 38:683-9; PMID:23249814; http://dx.doi.org/10.1038/npp.2012.234
  • Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, Phan BN, Hyde TM, Kleinman JE, Shin JH, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1. Neuron 2016; 90:43-55; PMID:26971948; http://dx.doi.org/10.1016/j.neuron.2016.02.021
  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008; 135:738-48; PMID:19013281; http://dx.doi.org/10.1016/j.cell.2008.10.028
  • Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N. Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 2014; 9:1282-91; PMID:24810037; http://dx.doi.org/10.1038/nprot.2014.085
  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008; 135:749-62; PMID:19013282; http://dx.doi.org/10.1016/j.cell.2008.10.029
  • Maher BJ, LoTurco JJ. Disrupted-in-schizophrenia (DISC1) functions presynaptically at glutamatergic synapses. PLoS One 2012; 7:e34053; PMID:22479520; http://dx.doi.org/10.1371/journal.pone.0034053
  • Maher BJ, LoTurco JJ. in Neuromethods 2011; 113-128; http://dx.doi.org/10.1007/978-1-61779-533-6_6
  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489:57-74; PMID:22955616; http://dx.doi.org/10.1038/nature11247
  • Zhuang Y, Cheng P, Weintraub H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol Cell Biol 1996; 16:2898-905; PMID:8649400; http://dx.doi.org/10.1128/MCB.16.6.2898
  • de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61; PMID:27050589; http://dx.doi.org/10.1038/nm.4071
  • Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: A consideration of autoregulatory feedback loops. Neuron 2016; 89:1131-56; PMID:26985722; http://dx.doi.org/10.1016/j.neuron.2016.02.017
  • Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 2013; 493:327-37; PMID:23325215; http://dx.doi.org/10.1038/nature11860