1,648
Views
12
CrossRef citations to date
0
Altmetric
Addendum

Pelger-Huët anomaly and Greenberg skeletal dysplasia: LBR-associated diseases of cholesterol metabolism

ORCID Icon & ORCID Icon
Article: e1241363 | Received 08 Aug 2016, Accepted 21 Sep 2016, Published online: 14 Oct 2016

References

  • Olins AL, Rhodes G, Welch DB, Zwerger M, Olins DE. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 2010; 1:53-70; PMID:21327105; http://dx.doi.org/10.4161/nucl.1.1.10515
  • Worman HJ, Evans CD, Blobel G. The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol 1990; 111:1535-42; PMID:2170422; http://dx.doi.org/10.1083/jcb.111.4.1535
  • Worman HJ, Yuan J, Blobel G, Georgatos SD. A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A 1988; 85:8531-4; PMID:2847165; http://dx.doi.org/10.1073/pnas.85.22.8531
  • Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 1996; 15:7108-19; PMID:9003786
  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol 2005; 6:21-31; PMID:15688064; http://dx.doi.org/10.1038/nrm1550
  • Holmer L, Pezhman A, Worman HJ. The Human Lamin B Receptor/Sterol Reductase Multigene Family. Genomics 1998; 54:469-76; PMID:9878250; http://dx.doi.org/10.1006/geno.1998.5615
  • Silve S, Dupuy PH, Ferrara P, Loison G. Human lamin B receptor exhibits sterol C14-reductase activity in Saccharomyces cerevisiae. Biochim Biophys Acta 1998; 1392:233-44; http://dx.doi.org/10.1016/S0005-2760(98)00041-1
  • Bennati AM, Castelli M, Della Fazia MA, Beccari T, Caruso D, Servillo G, Roberti R. Sterol dependent regulation of human TM7SF2 gene expression: Role of the encoded 3β-hydroxysterol Δ14-reductase in human cholesterol biosynthesis. Biochim Biophys Acta 2006; 1761:677-85; http://dx.doi.org/10.1016/j.bbalip.2006.05.004
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-40; PMID:9150132; http://dx.doi.org/10.1016/S0092-8674(00)80213-5
  • Sharpe LJ, Brown AJ. Controlling Cholesterol Synthesis beyond 3-Hydroxy-3-methylglutaryl-CoA Reductase (HMGCR). J Biol Chem 2013; 288:18707-15; PMID:23696639; http://dx.doi.org/10.1074/jbc.R113.479808
  • Tsai PL, Zhao C, Turner E, Schlieker CD. The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations. eLife 2016; 5:e16011; PMID:27336722
  • Burke B, Stewart CL. The Laminopathies: The Functional Architecture of the Nucleus and Its Contribution to Disease*. Annu Rev Genomics Hum Genet 2006; 7:369-405; PMID:16824021; http://dx.doi.org/10.1146/annurev.genom.7.080505.115732
  • Somech R, Shaklai S, Amariglio N, Rechavi G, Simon AJ. Nuclear envelopathies–raising the nuclear veil. Pediatr Res 2005; 57:8R-15R; PMID:15817509; http://dx.doi.org/10.1203/01.PDR.0000159566.54287.6C
  • Worman HJ, Bonne G. “Laminopathies:” a wide spectrum of human diseases. Exp Cell Res 2007; 313:2121-33; PMID:17467691; http://dx.doi.org/10.1016/j.yexcr.2007.03.028
  • Worman HJ, Ostlund C, Wang Y. Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol 2010; 2:a000760; PMID:20182615; http://dx.doi.org/10.1101/cshperspect.a000760
  • Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B, Karl H, Kaps R, Müller D, Vayá A, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet 2002; 31:410-4; PMID:12118250
  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Samuels R, Schweitzer PA, Dreger C, Herrmann H, Kalscheuer V, Olins AL, et al. Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene model for human Pelger–Huët anomaly. Hum Mol Genet 2003; 12:61-9; PMID:12490533; http://dx.doi.org/10.1093/hmg/ddg003
  • Konstantinidou A, Karadimas C, Waterham HR, Superti-Furga A, Kaminopetros P, Grigoriadou M, Kokotas H, Agrogiannis G, Giannoulia-Karantana A, Patsouris E, et al. Pathologic, radiographic and molecular findings in three fetuses diagnosed with HEM/Greenberg skeletal dysplasia. Prenat Diagn 2008; 28:309-12; PMID:18382993; http://dx.doi.org/10.1002/pd.1976
  • Best S, Salvati F, Kallo J, Garner C, Height S, Thein SL, Rees DC. Lamin B-receptor mutations in Pelger–Huët anomaly. Br J Haematol 2003; 123:542-4; PMID:14617022; http://dx.doi.org/10.1046/j.1365-2141.2003.04621.x
  • Subramanian G, Chaudhury P, Malu K, Fowler S, Manmode R, Gotur D, Zwerger M, Ryan D, Roberti R, Gaines P. Lamin B Receptor Regulates the Growth and Maturation of Myeloid Progenitors via its Sterol Reductase Domain: Implications for Cholesterol Biosynthesis in Regulating Myelopoiesis. J Immunol 2012; 188:85-102; PMID:22140257; http://dx.doi.org/10.4049/jimmunol.1003804
  • Oosterwijk JC, Mansour S, van Noort G, Waterham HR, Hall CM, Hennekam RCM. Congenital abnormalities reported in Pelger-Huët homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J Med Genet 2003; 40:937-41; PMID:14684694; http://dx.doi.org/10.1136/jmg.40.12.937
  • Waterham HR, Koster J, Mooyer P, Noort Gv, Kelley RI, Wilcox WR, Wanders RJ, Hennekam RC, Oosterwijk JC. Autosomal Recessive HEM/Greenberg skeletal dysplasia Is Caused by 3β-Hydroxysterol Δ14-Reductase Deficiency Due to Mutations in the Lamin B Receptor Gene. Am J Hum Genet 2003; 72:1013-7; PMID:12618959; http://dx.doi.org/10.1086/373938
  • Chitayat D, Gruber H, Mullen BJ, Pauzner D, Costa T, Lachman R, Rimoin DL. Hydrops‐ectopic calcification—moth‐eaten skeletal dysplasia (Greenberg dysplasia): Prenatal diagnosis and further delineation of a rare genetic disorder. Am J Med Genet 1993; 47:272-7; PMID:8213919; http://dx.doi.org/10.1002/ajmg.1320470226
  • Horn LC, Faber R, Meiner A, Piskazeck U, Spranger J. Greenberg dysplasia: first reported case with additional non‐skeletal malformations and without consanguinity. Prenat Diagn 2000; 20:1008-11; PMID:11113916; http://dx.doi.org/10.1002/1097-0223(200012)20:12%3c1008::AID-PD954%3e3.0.CO;2-S
  • Greenberg CR, Rimoin DL, Gruber HE, DeSa D, Reed M, Lachman RS. A new autosomal recessive lethal chondrodystrophy with congenital hydrops. Am J Med Genet 1988; 29:623-32; PMID:3377005; http://dx.doi.org/10.1002/ajmg.1320290321
  • Clayton P, Fischer B, Mann A, Mansour S, Rossier E, Veen M, Lang C, Baasanjav S, Kieslich M, Brossuleit K, et al. Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 2010; 1:354-66; PMID:21327084; http://dx.doi.org/10.4161/nucl.1.4.12435
  • Wassif CA, Brownson KE, Sterner AL, Forlino A, Zerfas PM, Wilson WK, Starost MF, Porter FD. HEM dysplasia and ichthyosis are likely laminopathies and not due to 3β-hydroxysterol Δ14-reductase deficiency. Hum Mol Genet 2007; 16:1176-87; PMID:17403717; http://dx.doi.org/10.1093/hmg/ddm065
  • Turner EM, Brown RS, Laudermilch E, Tsai PL, Schlieker C. The Torsin Activator LULL1 Is Required for Efficient Growth of Herpes Simplex Virus 1. J Virol 2015; 89:8444-52; PMID:26041288; http://dx.doi.org/10.1128/JVI.01143-15
  • Li X, Roberti R, Blobel G. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 2015; 517:104-7; PMID:25307054; http://dx.doi.org/10.1038/nature13797
  • Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 2008; 9:944-57; PMID:19002207; http://dx.doi.org/10.1038/nrm2546
  • Zattas D, Hochstrasser M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit Rev Biochem Mol Biol 2015; 50:1-17; PMID:25231236; http://dx.doi.org/10.3109/10409238.2014.959889
  • Dauer WT, Worman HJ. The nuclear envelope as a signaling node in development and disease. Dev Cell 2009; 17:626-38; PMID:19922868; http://dx.doi.org/10.1016/j.devcel.2009.10.016
  • Burke B, Stewart CL. Functional architecture of the cell's nucleus in development, aging, and disease. Curr Topics Dev Biol 2014; 109:1-52; PMID:24947235; http://dx.doi.org/10.1016/B978-0-12-397920-9.00006-8
  • Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64; PMID:25747401; http://dx.doi.org/10.1146/annurev-biochem-060614-034115
  • Rose A, Schlieker C. Alternative nuclear transport for cellular protein quality control. Trends Cell Biol 2012; 22:509-14; PMID:22858153; http://dx.doi.org/10.1016/j.tcb.2012.07.003
  • Labbadia J, Morimoto RI. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013; 38:378-85; PMID:23768628; http://dx.doi.org/10.1016/j.tibs.2013.05.003
  • Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354; PMID:27365453; http://dx.doi.org/10.1126/science.aac4354
  • Khmelinskii A, Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ, Le Dez G, Brossard A, Gunnarsson A, Barry JD, Meurer M, et al. Protein quality control at the inner nuclear membrane. Nature 2014; 516:410-3; PMID:25519137; http://dx.doi.org/10.1038/nature14096
  • Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P. Quality control of inner nuclear membrane proteins by the Asi complex. Science 2014; 346:751-5; PMID:25236469; http://dx.doi.org/10.1126/science.1255638