50
Views
2
CrossRef citations to date
0
Altmetric
Review

Dysregulated zinc homeostasis in rare skin disorders

, &
Pages 865-873 | Received 31 Aug 2017, Accepted 16 Oct 2017, Published online: 30 Oct 2017

References

  • Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012 Jun;26(2–3):66–69.
  • He LS, Yan XS, Wu DC. Age-dependent variation of zinc-65 metabolism in LACA mice. Int J Radiat Biol. 1991 Dec;60(6):907–916.
  • Andreini C, Banci L, Bertini I, et al. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006 Jan;5(1):196–201.
  • Gamsjaeger R, Liew CK, Loughlin FE, et al. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci. 2007 Feb;32(2):63–70.
  • Hirano T, Murakami M, Fukada T, et al. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol. 2008;97:149–176.
  • Prasad AS. Zinc in growth and development and spectrum of human zinc deficiency. J Am Coll Nutr. 1988 Oct;7(5):377–384.
  • Prasad AS, Halsted JA, Nadimi M. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med. 1961 Oct;31:532–546.
  • Gibson RS. Zinc nutrition in developing countries. Nutr Res Rev. 1994 Jan;7(1):151–173.
  • Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003 Sep;78(3 Suppl):633S–39S.
  • Prasad AS. Biochemistry of zinc. New York: Plenum Press, 1993.
  • Sandstead HH, Prasad AS, Penland JG, et al. Zinc deficiency in Mexican American children: influence of zinc and other micronutrients on T cells, cytokines, and antiinflammatory plasma proteins. Am J Clin Nutr. 2008 Oct;88(4):1067–1073.
  • Brown KH, Peerson JM, Rivera J, et al. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2002 Jun;75(6):1062–1071.
  • Maggini S, Wenzlaff S, Hornig D. Essential role of vitamin C and zinc in child immunity and health. J Int Med Res. 2010 Mar-Apr;38(2):386–414.
  • Maverakis E, Fung MA, Lynch PJ, et al. Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol. 2007 Jan;56(1):116–124.
  • Prasad AS. Zinc: an overview. Nutrition. 1995 Jan-Feb;11(1 Suppl):93–99.
  • Song Y, Chung CS, Bruno RS, et al. Dietary zinc restriction and repletion affects DNA integrity in healthy men. Am J Clin Nutr. 2009 Aug;90(2):321–328.
  • Fukada T, Hojyo S, Bin BH. Zinc Signal in Growth Control and Bone Diseases. Springer: Japan, 2014.
  • Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics. 2011 Jul 1;3(7):662–674.
  • Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003 Apr 1;1611(1–2):16–30.
  • Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016;2016:6762343.
  • Hojyo S, Fukada T. Zinc transporters and signaling in physiology and pathogenesis. Arch Biochem Biophys. 2016 Dec;01(611):43–50.
  • Colvin RA, Fontaine CP, Laskowski M, et al. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol. 2003 Oct 31;479(1–3):171–185.
  • Frederickson C. Imaging zinc: old and new tools. Sci STKE. 2003 May 13;2003(182):pe18.
  • Wei G, Hough CJ, Li Y, et al. Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience. 2004;125(4):867–877.
  • Xie X, Smart TG. Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Arch. 1994 Jul;427(5–6):481–486.
  • Li Y, Hough CJ, Suh SW, et al. Rapid translocation of Zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol. 2001 Nov;86(5):2597–2604.
  • Hershfinkel M, Moran A, Grossman N, et al. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11749–11754.
  • Kitamura H, Morikawa H, Kamon H, et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol. 2006 Sep;7(9):971–977.
  • Liu MJ, Bao S, Galvez-Peralta M, et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 2013 Feb 21;3(2):386–400.
  • Hojyo S, Miyai T, Fujishiro H, et al. Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11786–11791.
  • Nishida K, Hasegawa A, Nakae S, et al. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med. 2009 Jun 8;206(6):1351–1364.
  • King JC, Shames DM, Woodhouse LR. Zinc homeostasis in humans. J Nutr. 2000 May;130(5S Suppl):1360S–6S.
  • Inoue Y, Hasegawa S, Ban S, et al. ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J Biol Chem. 2014 Aug 01;289(31):21451–21462.
  • Michaelsson G, Ljunghall K, Danielson BG. Zinc in epidermis and dermis in healthy subjects. Acta Derm Venereol. 1980;60(4):295–299.
  • Andrews GK. Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans. 2008 Dec;36((Pt 6)):1242–1246.
  • Kury S, Dreno B, Bezieau S, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002 Jul;31(3):239–240.
  • Wang K, Zhou B, Kuo YM, et al. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002 Jul;71(1):66–73.
  • Bin BH, Bhin J, Kim NH, et al. An acrodermatitis enteropathica-associated zn transporter, ZIP4, regulates human epidermal homeostasis. J Invest Dermatol. 2017 Apr;137(4):874–883.
  • Bin BH, Bhin J, Seo J, et al. Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by regulating protein disulfide isomerase. J Invest Dermatol. 2017;137(8):1682–1691.
  • Taylor KM, Hiscox S, Nicholson RI, et al. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal. 2012 Feb 07;5(210):ra11.
  • Taylor KM, Kille P, Hogstrand C. Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle. 2012 May 15;11(10):1863–1864.
  • Fukada T, Civic N, Furuichi T, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 2008;3(11):e3642.
  • Ohashi W, Kimura S, Iwanaga T, et al. Zinc transporter SLC39A7/ZIP7 promotes intestinal epithelial self-renewal by resolving ER stress. PLoS Genet. 2016 Oct;12(10):e1006349.
  • Bin BH, Fukada T, Hosaka T, et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the Spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011 Sep 14;286(46):40255–40265.
  • Bin BH, Hojyo S, Hosaka T, et al. Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med. 2014;6(8):1028–1042.
  • Bin BH, Hojyo S, Ryong Lee T, et al. Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13. Rare Dis. 2014;2(1):e974982.
  • Giunta C, Elcioglu NH, Albrecht B, et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet. 2008 Jun;82(6):1290–1305.
  • Danbolt N, Closs K. Acrodermatitis enteropathica. Acta Derm Venereol. 1942;23:127–169.
  • Jen M, Shah KN, Yan AC. Cutaneous changes in nutritional diseases. New York: McGraw Hill; 2008.
  • Schmuth M, Fritsch PO. Cutaneous changes in nutritional diseases. Berlin: Springer-Verlag Berlin Heidelberg; 2011.
  • Dillaha CJ, Lorincz AL. Enteropathic acrodermatitis (Danbolt): successful treatment with diodoquin (diiodohydroxyquinoline). AMA Arch Derm Syphilol. 1953 Mar;67(3):324–326.
  • Dillaha CJ, Lorincz AL, Aavik OR. Acrodermatitis enteropathica; review of the literature and report of a case successfully treated with diodoquin. J Am Med Assoc. 1953 Jun 06;152(6):509–512.
  • Barnes PM, Moynahan EJ. Zinc deficiency in acrodermatitis enteropathica: multiple dietary intolerance treated with synthetic diet. Proc R Soc Med. 1973 Apr;66(4):327–329.
  • Moynahan EJ. Letter: acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet. 1974 Aug 17;2(7877):399–400.
  • Moynahan EJ, Barnes PM. Zinc deficiency and a synthetic diet for lactose intolerance. Lancet. 1973 Mar 24;1(7804):676–677.
  • Michaelsson G. Zinc therapy in acrodermatitis enteropathica. Acta Derm Venereol. 1974;54(5):377–381.
  • Aggett PJ, Delves HT, Harries JT, et al. The possible role of diodoquin as a zinc ionophore in the treatment of acrodermatitis enteropathica. Biochem Biophys Res Commun. 1979 Mar 30;87(2):513–517.
  • Delves HT, Harries JT, Lawson MS, et al. Letter: zinc and diodoquin in acrodermatitis enteropathica. Lancet. 1975 Nov 08;2(7941):929.
  • Danbolt N. Acrodermatitis enteropathica. Br J Dermatol. 1979 Jan;100(1):37–40.
  • Kambe T, Andrews GK. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol. 2009 Jan;29(1):129–139.
  • Dufner-Beattie J, Weaver BP, Geiser J, et al. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet. 2007 Jun 15;16(12):1391–1399.
  • Geiser J, Venken KJ, De Lisle RC, et al. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 2012;8(6):e1002766.
  • Nosbaum A, Vocanson M, Rozieres A, et al. Allergic and irritant contact dermatitis. Eur J Dermatol. 2009 Jul-Aug;19(4):325–332.
  • Kawamura T, Ogawa Y, Nakamura Y, et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J Clin Invest. 2012 Feb;122(2):722–732.
  • Ogawa Y, Kawamura T, Shimada S. Zinc and skin biology. Arch Biochem Biophys. 2016 Dec 01;611:113–119.
  • Mizumoto N, Mummert ME, Shalhevet D, et al. Keratinocyte ATP release assay for testing skin-irritating potentials of structurally diverse chemicals. J Invest Dermatol. 2003 Nov;121(5):1066–1072.
  • Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008 Dec;8(12):935–947.
  • Mizumoto N, Kumamoto T, Robson SC, et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med. 2002 Apr;8(4):358–365.
  • Borkowski TA, Letterio JJ, Farr AG, et al. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med. 1996 Dec 01;184(6):2417–2422.
  • Byers PH, Murray ML. Heritable collagen disorders: the paradigm of the Ehlers-Danlos syndrome. J Invest Dermatol. 2012 Nov 15;132(E1):E6–E11.
  • Fukunaka A, Fukada T, Bhin J, et al. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-beta expression. PLoS Genet. 2017 Aug;13(8):e1006950.
  • De Bettignies G, Coux O. Proteasome inhibitors: dozens of molecules and still counting. Biochimie. 2010 Nov;92(11):1530–1545.
  • Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol. 2014 Aug;29:82–91.
  • Sommer T, Jarosch E, Lenk U. Compartment-specific functions of the ubiquitin-proteasome pathway. Rev Physiol Biochem Pharmacol. 2001;142:97–160.
  • Phuan PW, Veit G, Tan J, et al. Synergy-based small-molecule screen using a human lung epithelial cell line yields DeltaF508-CFTR correctors that augment VX-809 maximal efficacy. Mol Pharmacol. 2014 Jul;86(1):42–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.