218
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the understanding of hereditary ataxia – implications for future patients

, , &
Pages 203-217 | Received 26 Jan 2018, Accepted 20 Feb 2018, Published online: 14 Mar 2018

References

  • Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes. 2014;5:586–603.
  • Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol. 2015;28:413–422.
  • Harding AE. Genetic aspects of autosomal dominant late onset cerebellar ataxia. J Med Genet. 1981;18:436–441.
  • Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–226.
  • Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–1427.
  • Didonna A, Opal P. Advances in sequencing technologies for understanding hereditary ataxias: a review. JAMA Neurol. 2016;73:1485–1490.
  • Coutelier M, Stevanin G, Brice A. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol. 2015;262:2382–2395.
  • Metzker ML. Sequencing technologies — the next generation. Nat Rev Genet. 2010;11:31.
  • Beaudin M, Klein CJ, Rouleau, GA, et al. Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum Ataxias. 2017;4:3.
  • Ruano L, Melo C, Silva MC, et al. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–183.
  • Paulson HL, Shakkottai VG, Clark HB, et al. Polyglutamine spinocerebellar ataxias — from genes to potential treatments. Nat Rev Neurosci. 2017;18:613.
  • He Y, Alam SL, Proteasa SV, et al. Yeast frataxin solution structure, iron binding, and ferrochelatase interaction. Biochemistry (Mosc.). 2004;43:16254–16262.
  • Bettencourt C, Ryten M, Forabosco P, et al. Insights from cerebellar transcriptomic analysis into the pathogenesis of ataxia. JAMA Neurol. 2014;71:831–839.
  • Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388:3017–3026.
  • Mendell JR, Chiriboga CA, Vajsar J, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–1722.
  • Drug lowers deadly Huntington’s disease protein. 2017 [cited 2018 Jan 23]. Available from: http://www.ucl.ac.uk/ion/articles/news/hd-gene-silencing.
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20:542–547.
  • Lynch D, Farmer J, Meyer C, et al. Safety, efficacy, and pharmacodynamics of omaveloxolone in friedreich’s ataxia patients (MOXIe Trial): part 1 results. 2nd International Ataxia Research Conference; Pisa. 2017.
  • Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–894.
  • Martins CR, Martinez ARM, De Rezende TR, et al. Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum Lond Engl. 2017;16:792–796.
  • Hernandez-Castillo CR, Diaz R, Campos-Romo A, et al. Neural correlates of ataxia severity in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum Ataxias. 2017;4.
  • Jacobi H, Du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14:1101–1108.
  • Sun Y-M, Lu C, Wu Z-Y. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet. 2016;90:305–314.
  • The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on huntington’s disease chromosomes. Cell. 1993;72:971–983.
  • Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev. 2006;20:2183–2192.
  • La Spada AR, Wilson EM, Lubahn DB, et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–79.
  • Budworth H, McMurray CT. A brief history of triplet repeat diseases. Methods Mol Biol Clifton NJ. 2013;1010:3–17.
  • Dueñas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain J Neurol. 2006;129:1357–1370.
  • Kobayashi H, Abe K, Matsuura T, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–130.
  • Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with ‘inserted’ penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85:544–557.
  • Holmes SE, O’Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391.
  • Moseley ML, Zu T, Ikeda Y, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006;38:758–769.
  • Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191.
  • Ikeda Y, Daughters RS, Ranum LPW. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum. 2008;7:150–158.
  • Zu T, Gibbens B, Doty NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108:260–265.
  • Bañez-Coronel M, Ayhan F, Tarabochia AD, et al. RAN translation in huntington disease. Neuron. 2015;88:667–677.
  • Zu T, Liu Y, Bañez-Coronel M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A. 2013;110:E4968–4977.
  • Zu T, Cleary JD, Liu Y, et al. RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron. 2017;95:1292–1305.e5.
  • Scoles DR, Ho MH, Dansithong W, et al. Repeat associated non-AUG translation (RAN translation) dependent on sequence downstream of the ATXN2 CAG repeat. PloS One. 2015;10:e0128769.
  • Galea CA, Huq A, Lockhart PJ, et al. Compound heterozygous FXN mutations and clinical outcome in friedreich ataxia. Ann Neurol. 2016;79:485–495.
  • Mascalchi M, Bianchi A, Ciulli S, et al. Lower medulla hypoplasia in Friedreich ataxia: MR imaging confirmation 140 years later. J Neurol. 2017;264:1526–1528.
  • Koeppen AH, Becker AB, Qian J, et al. Friedreich ataxia: hypoplasia of spinal cord and dorsal root ganglia. J Neuropathol Exp Neurol. 2017;76:101–108.
  • Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366:636–646.
  • Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335:1169–1175.
  • Lecocq C, Charles P, Azulay JP, et al. Delayed-onset Friedreich’s ataxia revisited. Mov Disord Off J Mov Disord Soc. 2016;31:62–69.
  • Hagerman RJ, Leehey M, Heinrichs W, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology. 2001;57:127–130.
  • Krans A, Kearse MG, Todd PK. Repeat-associated non-AUG translation from antisense CCG repeats in fragile X tremor/ataxia syndrome. Ann Neurol. 2016;80:871–881.
  • Sellier C, Freyermuth F, Tabet R, et al. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep. 2013;3:869–880.
  • Willemsen R, Levenga J, Oostra BA. CGG repeat in the FMR1 gene: size matters. Clin Genet. 2011;80:214–225.
  • Friedman JE. Anticipation in hereditary disease: the history of a biomedical concept. Hum Genet. 2011;130:705–714.
  • Figueroa KP, Coon H, Santos N, et al. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurol Genet. 2017;3.
  • Pulst S-M, Santos N, Wang D, et al. Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain J Neurol. 2005;128:2297–2303.
  • Tezenas du Montcel S, Durr A, Bauer P, et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain. 2014;137:2444–2455.
  • Chen Z, Zheng C, Long Z, et al. (CAG)n loci as genetic modifiers of age-at-onset in patients with Machado-Joseph disease from mainland China. Brain. 2016;139:e41–e41.
  • van de Warrenburg BP, Hendriks H, Dürr A, et al. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch-French cohort. Ann Neurol. 2005;57:505–512.
  • Jardim L, Silveira I, Pereira ML, et al. Searching for modulating effects of SCA2, SCA6 and DRPLA CAG tracts on the Machado-Joseph disease (SCA3) phenotype. Acta Neurol Scand. 2003;107:211–214.
  • Raposo M, Ramos A, Bettencourt C, et al. Replicating studies of genetic modifiers in spinocerebellar ataxia type 3: can homogeneous cohorts aid? Brain. 2015;138:e398–e398.
  • França MC, Emmel VE, D’Abreu A, et al. Normal ATXN3 allele but not CHIP polymorphisms modulates age at onset in Machado–joseph disease. Front Neurol. 2012;3.
  • Zühlke C, Dalski A, Hellenbroich Y, et al. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet EJHG. 2002;10:204–209.
  • Chung M-Y, Ranum LP, Duvick LA, et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993;5:254–258.
  • Menon RP, Nethisinghe S, Faggiano S, et al. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet. 2013;9:e1003648.
  • Fratta P, Collins T, Pemble S, et al. Sequencing analysis of the spinal bulbar muscular atrophy CAG expansion reveals absence of repeat interruptions. Neurobiol Aging. 2014;35:443.e1–3.
  • Wiethoff S, O’Connor E, Haridy NA, et al. Sequencing analysis of the SCA6 CAG expansion excludes an influence of repeat interruptions on disease onset. J Neurol Neurosurg Psychiatry. 2018. pii: jnnp-2017-317253.
  • Bettencourt C, Hensman-Moss D, Flower M, et al. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann Neurol. 2016;79:983–990.
  • Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14:174–182.
  • Pousset F, Legrand L, Monin ML, et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 2015;72:1334–1341.
  • Filla A, De Michele G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–560.
  • Lazaropoulos M, Dong Y, Clark E, et al. Frataxin levels in peripheral tissue in Friedreich ataxia. Ann Clin Transl Neurol. 2015;2:831–842.
  • Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005;6:729–742.
  • Trang H, Stanley SY, Thorner P, et al. Massive CAG repeat expansion and somatic instability in maternally transmitted infantile spinocerebellar ataxia type 7. JAMA Neurol. 2015;72:219–223.
  • Monrós E, Moltó MD, Martínez F, et al. Phenotype correlation and intergenerational dynamics of the Friedreich ataxia GAA trinucleotide repeat. Am J Hum Genet. 1997;61:101–110.
  • Geschwind DH, Perlman S, Figueroa CP, et al. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60:842–850.
  • Wang C, Xu Y, Feng X, et al. Linkage analysis and whole-exome sequencing exclude extra mutations responsible for the parkinsonian phenotype of spinocerebellar ataxia-2. Neurobiol Aging. 2015;36:545.e1–7.
  • Charles P, Camuzat A, Benammar N, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology. 2007;69:1970–1975.
  • Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–1075.
  • Conforti FL, Spataro R, Sproviero W, et al. Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology. 2012;79:2315–2320.
  • Neuenschwander AG, Thai KK, Figueroa KP, et al. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 2014;71:1529–1534.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–133.
  • Zhang M, Xi Z, Misquitta K, et al. C9orf72 and ATXN2 repeat expansions coexist in a family with ataxia, dementia, and parkinsonism. Mov Disord Off J Mov Disord Soc. 2017;32:158–162.
  • Giunti P, Sweeney MG, Harding AE. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotide repeat expansion in families with autosomal dominant motor disorders, including the Drew family of Walworth. Brain J Neurol. 1995;118(Pt 5):1077–1085.
  • Bettencourt C, Santos C, Coutinho P, et al. Parkinsonian phenotype in Machado-Joseph disease (MJD/SCA3): a two-case report. BMC Neurol. 2011;11:131.
  • Durcan TM, Fon EA. Ataxin-3 and its E3 partners: implications for Machado–joseph disease. Front Neurol. 2013;4:46.
  • Stevanin G, Fujigasaki H, Lebre AS, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain J Neurol. 2003;126:1599–1603.
  • Kim J-Y, Kim S-Y, Kim J-M, et al. Spinocerebellar ataxia type 17 mutation as a causative and susceptibility gene in parkinsonism. Neurology. 2009;72:1385–1389.
  • Sequeiros J, Seneca S, Martindale J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet. 2010;18:1188–1195.
  • van de Warrenburg BPC, van Gaalen J, Boesch S, et al. EFNS/ENS consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol. 2014;21:552–562.
  • Worth PF, Houlden H, Giunti P, et al. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 2000;24:214–215.
  • Van Alfen N, Sinke RJ, Zwarts MJ, et al. Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype. Ann Neurol. 2001;49:805–808.
  • UK Genetic Testing. Find a test. UK Genetic Testing Network. 2016 [cited 2017 Dec 11]. Available from: https://ukgtn.nhs.uk/find-a-test/search-by-disorder-gene/.
  • Pyle A, Smertenko T, Bargiela D, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138:276–283.
  • Coutelier M, Coarelli G, Monin ML, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140:1579–1594.
  • Fogel BL, Lee H, Deignan JL, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71:1237–1246.
  • Krier JB, Kalia SS, Green RC. Genomic sequencing in clinical practice: applications, challenges, and opportunities. Dialogues Clin Neurosci. 2016;18:299–312.
  • Németh AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain J Neurol. 2013;136:3106–3118.
  • Iqbal Z, Rydning SL, Wedding IM, et al. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. Plos One. 2017;12:e0174667.
  • Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017;88:301–309.
  • Keogh MJ, Steele H, Douroudis K, et al. Frequency of rare recessive mutations in unexplained late onset cerebellar ataxia. J Neurol. 2015;262:1822–1827.
  • Koppen M, Metodiev MD, Casari G, et al. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol. 2007;27:758–767.
  • van de Warrenburg BP, Schouten MI, De Bot ST, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet EJHG. 2016;24:1460–1466.
  • Pfeffer G, Pyle A, Griffin H, et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology. 2015;84:1174–1176.
  • Choquet K, Tétreault M, Yang S, et al. SPG7 mutations explain a significant proportion of French Canadian spastic ataxia cases. Eur J Hum Genet. 2016;24:1016.
  • Guerreiro R, Brás J, Hardy J, et al. Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet. 2014;23:R47–R53.
  • Sandford E, Li JZ, Burmeister M. Evaluation of exome sequencing variation in undiagnosed ataxias. Brain. 2015;138:e383–e383.
  • Blackburn HL, Schroeder B, Turner C, et al. Management of incidental findings in the era of next-generation sequencing. Curr Genomics. 2015;16:159–174.
  • GeneDX. Ataxia xpanded panel. 2017 [cited 2017 Nov 10]. Available from: https://www.genedx.com/wp-content/uploads/2017/03/info_sheet_AtaxiaXpanded.pdf
  • Ataxia exome panel. University of Chicago, Genetic Services Laboratories. 2017. [cited 2017 Dec 10]. Available from: http://dnatesting.uchicago.edu/tests/ataxia-exome-panel
  • Chen Y, Zhao L, Wang Y, et al. SeqCNV: a novel method for identification of copy number variations in targeted next-generation sequencing data. BMC Bioinform. 2017;18:147.
  • Foo J-N, Liu -J-J, Tan E-K. Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol. 2012;8:508–517.
  • Coutelier M, Blesneac I, Monteil A, et al. A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet. 2015;97:726–737.
  • Zanni G, Calì T, Kalscheuer VM, et al. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A. 2012;109:14514–14519.
  • Bras J, Alonso I, Barbot C, et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet. 2015;96:474–479.
  • Protasova MS, Grigorenko AP, Tyazhelova TV, et al. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry. Eur J Hum Genet EJHG. 2016;24:550–555.
  • Lee Y-C, Durr A, Majczenko K, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72:859–869.
  • Pang SY, Teo KC, Hsu JS, et al. The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener. 2017;6:27.
  • Giunti P, Mantuano E, Frontali M, et al. Molecular mechanism of Spinocerebellar Ataxia type 6: glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation. Front Cell Neurosci. 2015;9:36.
  • Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol. 2005;70:99–109.
  • Jones L, Houlden H, Tabrizi SJ. DNA repair in the trinucleotide repeat disorders. Lancet Neurol. 2017;16:88–96.
  • Lokanga RA, Zhao X-N, Usdin K. The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum Mutat. 2014;35:129–136.
  • Shuvaev AN, Hosoi N, Sato Y, et al. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol. 2017;595:141–164.
  • Pulst SM. Degenerative ataxias, from genes to therapies: the 2015 Cotzias Lecture. Neurology. 2016;86:2284–2290.
  • Schoch KM, Miller TM. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94:1056–1070.
  • Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12:435–442.
  • Safety, tolerability, pharmacokinetics, and pharmacodynamics of IONIS-HTTRx in patients with early manifest huntington’s disease - clinicalTrials.gov. [cited 2017 Dec 8]. Available from: https://clinicaltrials.gov/ct2/show/NCT02519036
  • Toonen LJA, Schmidt I, Luijsterburg MS, et al. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Sci Rep. 2016;6:35200.
  • Evers MM, Tran HD, Zalachoras I, et al. Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis. 2013;58:49–56.
  • Toonen LJA, Rigo F, van Attikum H, et al. Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol Ther Nucleic Acids. 2017;8:232–242.
  • Moore LR, Rajpal G, Dillingham IT, et al. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids. 2017;7:200–210.
  • Pulst SM. Degenerative ataxias, from genes to therapies. Neurology. 2016;86:2284–2290.
  • Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367–371.
  • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59.
  • Kraemer BC, Schuck T, Wheeler JM, et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol (Berl.). 2010;119:409–419.
  • Ramachandran PS, Boudreau RL, Schaefer KA, et al. Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther J Am Soc Gene Ther. 2014;22:1635–1642.
  • Scholefield J, Greenberg LJ, Weinberg MS, et al. Design of RNAi hairpins for mutation-specific silencing of Ataxin-7 and correction of a SCA7 phenotype. Plos One. 2009;4:e7232.
  • Costa Mdo C, Luna-Cancalon K, Fischer S, et al. Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol Ther J Am Soc Gene Ther. 2013;21:1898–1908.
  • Nóbrega C, Nascimento-Ferreira I, Onofre I, et al. Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PloS One. 2013;8:e52396.
  • Curtis HJ, Seow Y, Wood MJA, et al. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res. 2017;45:7870–7885.
  • Saute JA, De Castilhos RM, Monte TL, et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord Off J Mov Disord Soc. 2014;29:568–573.
  • Saccà, F., Puorro G, Brunetti A, et al. A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2. J Neurol. 2015;262:149–153.
  • Zesiewicz TA, Greenstein PE, Sullivan KL, et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012;78:545–550.
  • Romano S, Coarelli G, Marcotulli C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14:985–991.
  • Biohaven reports negative topline data from spinocerebellar ataxia (SCA) phase 2/3 trial. Biohaven. 2017. [cited 2017 Dec 10]. Available from:  http://biohavenpharma.com/biohaven-reports-negative-topline-data-from-spinocerebellar-ataxia-sca-phase-23-trial/
  • Saute JAM, Jardim LB. Machado Joseph disease: clinical and genetic aspects, and current treatment. Expert Opin Orphan Drugs. 2015;3:517–535.
  • Clinical trial with riluzole in spinocerebellar ataxia type 2 (ATRIL) - ClinicalTrials.gov. [cited 2017 Dec 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT03347344
  • Tsai YA, Liu RS, Lirng JF, et al. treatment of spinocerebellar ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transplant. 2017;26:503–512.
  • Chang Y-K, Chen M-H, Chiang Y-H, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.
  • Zhang M-J, Sun -J-J, Qian L, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res. 2011;1402:122–131.
  • Mendonça LS, Nóbrega C, Hirai H, et al. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain J Neurol. 2015;138:320–335.
  • Efficacy and safety study of Stemchymal® in polyglutamine spinocerebellar ataxia - full text view - clinicalTrials.gov. [cited 2017 Dec 6]. Available from: https://clinicaltrials.gov/ct2/show/NCT02540655
  • Cotticelli MG, Crabbe AM, Wilson RB, et al. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol. 2013;1:398–404.
  • Abeti R, Parkinson MH, Hargreaves IP, et al. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis. 2016;7:e2237.
  • Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol. 2010;67:941–947.
  • Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011;161:639–645.e1.
  • Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab. 2012;105:91–102.
  • Zesiewicz T, Allison K, Jahan I, et al. EPI-743 improves motor function and CNS biomarkers in PD: results from a phase 2A pilot trial (S40.004). Neurology. 2016;86:S40.004.
  • Holmström KM, Kostov RV, Dinkova-Kostova AT. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 2016;1:80–91.
  • RTA 408 capsules in patients with Friedreich’s ataxia - MOXIe - clinicalTrials.gov. [cited 2017 Dec 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02255435
  • Vyas PM, Tomamichel WJ, Pride PM, et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2012;21:1230–1247.
  • Nabhan JF, Wood KM, Rao VP, et al. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci Rep. 2016;6:20019.
  • Soragni E, Gottesfeld JM. Translating HDAC inhibitors in Friedreich’s ataxia. Expert Opin Orphan Drugs. 2016;4:961–970.
  • Soragni E, Miao W, Iudicello M, et al. Epigenetic therapy for friedreich ataxia. Ann Neurol. 2014;76:489–508.
  • Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun. 2016;7:10606.
  • Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet. 2007;16 Spec No. 2: R115–123.
  • Zhang K, Rothstein JD. Neurodegenerative disease: two–for–one on potential therapies. Nature. 2017;544:302.
  • Wild EJ, Boggio R, Langbehn D, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125:1979–1986.
  • Keiser MS, Kordasiewicz HB, McBride JL. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from huntington’s disease and spinocerebellar ataxia. Hum Mol Genet. 2016;25:R53–64.
  • Porter FD, Scherrer DE, Lanier MH, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2:56ra81.
  • Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-930.
  • Byrne LM, Rodrigues FB, Blennow K, et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in huntington’s disease: a retrospective cohort analysis. Lancet Neurol. 2017;16:601–609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.