178
Views
6
CrossRef citations to date
0
Altmetric
Review

Clinical trial design for Friedreich ataxia - Where are we now and what do we need?

, &
Pages 219-230 | Received 17 Jan 2018, Accepted 05 Mar 2018, Published online: 14 Mar 2018

References

  • Bidichandani SI, Delatycki MB. Friedreich ataxia. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle;1998. [cited Dec 18; updated 2017 Jun 1].
  • Strawser C, Schadt K, Hauser L, et al. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother. 2017;17:895–907.
  • Pandolfo M. Friedreich ataxia. Arch Neurol. 2008;65:1296–1303.
  • Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104:589–620.
  • Pousset F, Legrand L, Monin ML, et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 2015;72:1334–1341.
  • Tsou AY, Paulsen EK, Lagedrost SJ, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307:46–49.
  • Isaya G. Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Front Pharmacol. 2014;3(5):29.
  • Evans-Galea MV, Lockhart PJ, Galea CA, et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med. 2014;17:25–35.
  • González-Cabo P, Palau F. Mitochondrial pathophysiology in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):53–64.
  • Perlman SL. A review of Friedreich ataxia clinical trial results. J Child Neurol. 2012;27:1217–1222.
  • Sacca F. Summary and lessons learned from ataxia trials. International Ataxia research conference; 2018 Sept 27-30; 2017; Pisa IT; p. 41.
  • Yiu EM, Tai G, Peverill RE, et al. open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262:1344–1353.
  • A phase iia trial to test safety and efficacy interferon gamma treatment in elevating frataxin levels in FRDA patients. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • [cited 2018 Jan 14]. Available from: https://www.fiercebiotech.com/biotech/horizon-slumps-after-phase-3-friedreich-s-ataxia-trial-flops
  • Pilot Study of Varenicline (Chantix®) in the Treatment of Friedreich’s Ataxia. [ cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Zesiewicz T, Perlman S, Sullivan K, et al. EPI-743 (Alpha-tocotrienol Quinone) demonstrates long-term improvement in neurological function and disease progression in Friedreich’s ataxia. International ataxia research conference; 2017 Sep 29; 2017; Pisa, IT; p. 193.
  • Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol. 2010;67:941–947.
  • Methylprednisolone treatment of Friedreich Ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov.
  • EPI-743 in Friedreich’s ataxia point mutations. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab. 2012;105:91–102.
  • Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384:504–513.
  • Rosuvastatin (Crestor) in Friedreich Ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • (+) Epicatechin to treat Friedreich’s ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Fortuna F, Barboni P, Liguori R, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain. 2009;132:116–123.
  • Lynch DR, Farmer JM, Rochestie D, et al. Contrast letter acuity as a measure of visual dysfunction in patients with Friedreich ataxia. J Neuroophthalmol. 2002;22:270–274.
  • Rance G, Ryan MM, Carew P, et al. Binaural speech processing in individuals with auditory neuropathy. Neuroscience. 2012;226:227–235.
  • Rance G, Corben L, Delatycki M. Auditory processing deficits in children with Friedreich ataxia. J Child Neurol. 2012;27:1197–1203.
  • [cited 2018 Jan 13]. Available from: https://www.curefa.net/registry/
  • Reetz K, Dogan I, Hilgers RD, et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol. 2016;15:1346–1354.
  • Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14:174–182.
  • Friedman LS, Farmer JM, Perlman S, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov. Disord. 2010;25:426–432.
  • Lynch DR, Farmer JM, Tsou AY, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology. 2006;66:1711–1716.
  • Patel M, Isaacs CJ, Seyer L, et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol. 2016;3:684–694.
  • Lin H, Magrane J, Clark EM, et al. EarlyVGLUT1-specific parallel fiber synaptic deficits and dysregulated cerebellar circuit in the KIKO mouse model of Friedreich ataxia. Dis Model Mech. 2017;10:1529–1538.
  • Santoro L, De Michele G, Perretti A, et al. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 1999;66:93–96.
  • Santoro L, Perretti A, Lanzillo B, et al. Influence of GAA expansion size and disease duration on central nervous system impairment in Friedreich’s ataxia: contribution to the understanding of the pathophysiology of the disease. Clin Neurophysiol. 2000;111:1023–1030.
  • Koeppen AH, Becker AB, Qian J, et al. Friedreich ataxia: hypoplasia of spinal cord and dorsal root Ganglia. J Neuropathol Exp Neurol. 2017;76:101–108.
  • Koeppen AH, Becker AB, Qian J, et al. Friedreich ataxia: developmental failure of the dorsal root entry zone. J Neuropathol Exp Neurol. 2017;76:969–977.
  • DeBrosse C, Nanga RP, Wilson N, et al. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight. 2016;1:e88207.
  • Lodi R, Hart PE, Rajagopalan B, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49:590–596.
  • Schapira A, Lodi R. Assessment of in vitro and in vivo mitochondrial function in Friedreich’s ataxia and Huntington’s disease. Methods Mol Biol. 2004;277:293–307.
  • Nachbauer W, Boesch S, Schneider R, et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by31P-MRS before and after treatment with recombinant human erythropoietin. PLoS One. 2013;8:e69229.
  • Rustin P, Munnich A, Rötig A. Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron-induced injury in vitro. Biofactors. 1999;9:247–251.
  • Seznec H, Simon D, Monassier L, et al. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet. 2004;13:1017–1024.
  • Jauslin ML, Meier T, Smith RA, et al. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. Faseb J. 2003;17:1972–1974.
  • Seznec H, Simon D, Bouton C, et al. Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet. 2005;14:463–474.
  • Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K, et al. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet. 1999;354:477–479.
  • Schöls L, Vorgerd M, Schillings M, et al. Idebenone in patients with Friedreich ataxia. Neurosci Lett. 2001;306:169–172.
  • Hausse AO, Aggoun Y, Bonnet D, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87:346–349.
  • Rustin P, Rötig A, Munnich A, et al. Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res. 2002;36:467–469.
  • Artuch R, Aracil A, Mas A, et al. Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics. 2002;33:190–193.
  • Di Prospero NA, Sumner CJ, Penzak SR, et al. Safety, tolerability, and pharmacokinetics of high-dose idebenone in patients with Friedreich ataxia. Arch Neurol. 2007;64:803–808.
  • Di Prospero NA, Baker A, Jeffries N, et al. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6:878–886.
  • Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011;161:639–645.e1.
  • Meier T, Perlman SL, Rummey C, et al. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol. 2012;259:284–291.
  • A study of efficacy, safety and tolerability of idebenone in the treatment of Friedreich’s ataxia (FRDA) patients. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Schulz JB, Di Prospero NA, Fischbeck K. Clinical experience with high-dose idebenone in Friedreich ataxia. J Neurol. 2009;256(Suppl 1):42–45.
  • Bendheim PE, Poeggeler B, Neria E, et al. Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J Mol Neurosci. 2002;19:213–217.
  • Shrader WD, Amagata A, Barnes A, et al. α-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg Med Chem Lett. 2011;21:3693–3698.
  • Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord. 2012;27:1026–1033.
  • Saccà F, Puorro G, Marsili A, et al. Long-term effect of epoetin alFRDA on clinical and biochemical markers in Friedreich ataxia. Mov Disord. 2016;31:734–741.
  • Wells M, Seyer L, Schadt K, et al. IFN-γ for Friedreich ataxia: present evidence. Neurodegener Dis Manag. 2015;5:497–504.
  • Safety, tolerability and efficacy of ACTIMMUNE dose escalation in Friedreich’s ataxia study. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Marcotulli C, Fortuni S, Arcuri G, et al. GIFT-1, a phase IIa clinical trial to test the safety and efficacy of IFNγ administration in FRDA patients. Neurol Sci. 2016;37:361–364.
  • Seyer L, Greeley N, Foerster D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand. 2015;132:7–15.
  • Soragni E, Miao W, Iudicello M, et al. Epigenetic therapy for Friedreich ataxia. Ann Neurol. 2014;76:489–508.
  • Boesch S, Nachbauer W, Mariotti C, et al. Safety and tolerability of carbamylated erythropoietin in Friedreich’s ataxia. Mov Disord. 2014;29:935–939.
  • Egger K, Clemm Von Hohenberg C, Schocke MF, et al. White matter changes in patients with Friedreich ataxia after treatment with erythropoietin. J Neuroimaging. 2014;24:504–508.
  • Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):147–154.
  • Mariotti C, Fancellu R, Caldarazzo S, et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord. 2012;27:446–449.
  • Nachbauer W, Hering S, Seifert M, et al. Effects of erythropoietin on frataxin levels and mitochondrial function in Friedreich ataxia–a dose-response trial. Cerebellum. 2011;10:763–769.
  • Saccà F, Piro R, De Michele G, et al. Epoetin alFRDA increases frataxin production in Friedreich’s ataxia without affecting hematocrit. Mov Disord. 2011;26:739–742.
  • Boesch S, Sturm B, Hering S, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23:1940–1944.
  • Boesch S, Sturm B, Hering S, et al. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62:521–524.
  • Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377:1723–1732.
  • Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–1722.
  • Guo L, Wang Q, Weng L, et al. Liquid chromatography-high resolution mass spectrometry analysis of platelet frataxin as a protein biomarker for the rare disease Friedreich’s ataxia. Anal Chem. 2018;90:2216–2223.
  • Wang Q, Guo L, Strawser CJ, et al. Low apolipoprotein A-I levels in Friedreich’s ataxia and in frataxin-deficient cells: implications for therapy. PLoS One. 2018;13:e0192779.
  • Worth AJ, Basu SS, Deutsch EC, et al. Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich’s ataxia platelets. Bioanalysis. 2015;7:1843–1855.
  • Basu SS, Deutsch EC, Schmaier AA, et al. Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis. 2013;5:3009–3021.
  • Rummey C, Farmer JM. Lynch DR Detailing the natural history of Friedreich’s Ataxia – loss of ambulation in the CCRNFRDA study. International Ataxia Res conference; 2017 Sep 29; Pisa It; 30.
  • Clark RM, De Biase I, Malykhina AP, et al. The GAA triplet-repeat is unstable in the context of the human FXN locus and displays age-dependent expansions in cerebellum and DRG in a transgenic mouse model. Hum Genet. 2007;120:633–640.
  • De Biase I, Rasmussen A, Endres D, et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann Neurol. 2007;61:55–60.
  • Pandolfo M, Arpa J, Delatycki MB, et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol. 2014;76:509–521.
  • Mariotti C, Solari A, Torta D, et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2003;60:1676–1679.
  • Rustin P, Bonnet D, Rötig A, et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2004;62:524–525.
  • Safety and pharmacology study of VP 20629 in adults with Friedreich’s ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Boddaert N, Le Quan Sang KH, Rotig A, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–408.
  • RTA 408 capsules in patients with Friedreich’s ataxia – mOXIe. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Safety study of carbamylated erythropoietin to treat patients with the neurodegenerative disorder Friedreich’s ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Effect of pioglitazone administered to patients with Friedreich’s ataxia: proof of concept. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Efficacy of EGb761 in patients suffering from Friedreich ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • A first in human study of RT001 in patients with Friedreich’s ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Seyer LA, Galetta K, Wilson J, et al. Analysis of the visual system in Friedreich ataxia. J Neurol. 2013;260:2362–2369.
  • Efficacy, tolerability, and pharmacokinetics of multiple doses of oral TAK-831 in adults with Friedreich ataxia. [cited 2018 Jan 13]. Available from: Www.clinicaltrials.gov
  • Em Y, Tai G, Peverill RE, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262:1344–1353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.