176
Views
0
CrossRef citations to date
0
Altmetric
Review

The potential role of gut microbiota and its modulators in the management of propionic and methylmalonic acidemia

, , , , , , , , , & show all
Pages 683-692 | Received 15 Jun 2018, Accepted 11 Oct 2018, Published online: 23 Oct 2018

References

  • Fowler B, Leonard JV, Mr B. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–360.
  • Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism. In: Cr S, editor. The metabolic & molecular bases of inherited disease. Vol. 1. McGraw-Hill; New York, US. 2001. p. ch 94.
  • Fraser JL, Cp V. Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr. 2016;28:682–693.
  • Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.
  • Sutton VR, Chapman KA, Gropman AL, et al. Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab. 2012;105:26–33.
  • Aldubayan SH, Rodan LH, Berry GT, et al. Acute illness protocol for organic acidemias: methylmalonic acidemia and propionic acidemia. Pediatr Emerg Care. 2017;33:142–146.
  • Kölker S, Garcia-Cazorla A, Valayannopoulos V, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis. 2015;38:1041–1057.
  • Pena L, Bk B. Survey of health status and complications among propionic acidemia patients. Am J Med Genet A. 2012;158A:1641–1646.
  • Kӧlker S, Valayannopoulos V, Burlina AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38:1059–1074.
  • Niemi AK, Kim IK, Krueger CE. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr. 2015;166(1455–61):e1451.
  • Sloan JL, Manoli I, Venditti CP, et al. Liver or combined liver-kidney transplantation for patients with isolated methylmalonic acidemia: who and when? J Pediatr. 2015;166:1346–1350.
  • Spada M, Calvo PL, Brunati A, et al. Anaplerotic therapy in propionic acidemia. Mol Genet Metab. 2017;122:51–59.
  • Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8:1323–1335.
  • Prasad C, Nurko S, Borovoy J, et al. J Pediatr. 2004;144:532–535.
  • Thompson GN, Walter JH, Bresson JL, et al. Sources of propionate in inborn errors of propionate metabolism. Metabolism. 1990;39:1133–1137.
  • Leonard JV. Stable isotope studies in propionic and methylmalonic acidaemia. Eur J Pediatr. 1997;156(Suppl 1):S67–9.
  • Roager HM, Hansen LB, Bahl MI, et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol. 2016;1:16093.
  • Tottey W, Feria-Gervasio D, Gaci N, et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J Neurogastroenterol Motil. 2017;23:124–134.
  • Rafique M. Clinical spectrum of propionic acidaemia. J Nutr Metab. 2013;2013:975964.
  • Mellon AF, Deshpande SA, Mathers JC, et al. Arch Dis Child. 2000;82:169–172.
  • Thompson GN, Chalmers RA, Walter JH, et al. The use of metronidazole in management of methylmalonic and propionic acidaemias. Eur J Pediatr. 1990;149:792–796.
  • Hoverstad T, Carlstedt-Duke B, Lingaas E, et al. Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol. 1986;21:621–626.
  • Hoverstad T, Carlstedt-Duke B, Lingaas E, et al. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scand J Gastroenterol. 1986;21:997–1003.
  • Agarwal A, Kanekar S, Sabat S, et al. Metronidazole-induced cerebellar toxicity. Neurol Int. 2016;8:6365.
  • Jakobsson HE, Jernberg C, Andersson AF, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5:e9836.
  • Ferrer M, Mendez-Garcia C, Rojo D, et al. Antibiotic use and microbiome function. Biochem Pharmacol. 2017;134:114–126.
  • Louis P. Flint HJ: diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.
  • Louis P, Young P, Holtrop G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetateCoA-transferase gene. Environ Microbiol. 2010;12:304–314.
  • Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014;5:e00889.
  • Belenguer A, Duncan SH, Holtrop G, et al. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol. 2007;73:6526–6533.
  • Duncan SH, Louis P, Thomson JM, et al. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009;11:2112–2122.
  • Walker AW, Duncan SH, Leitch ECM, et al. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology. 2005;71:3692–3700.
  • Macfarlane GT, Gibson GR. Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In: Mackie RI, White BA, editors. Gastrointestinal microbiology: volume 1 gastrointestinal ecosystems and fermentations. Springer, Boston, MA; 1997. pp. 269–318.
  • Fleming SE, Fitch MD, Chansler MW. High-fiber diets: influence on characteristics of cecal digesta including short-chain fatty acid concentrations and pH. Am J Clin Nutr. 1989;50:93–99.
  • Daly A, Evans S, Gerrard A, et al. The nutritional intake of patients with organic acidaemias on enteral tube feeding: can we do better? JIMD Rep. 2016;28:29–39.
  • Daly A, Evans S, Ashmore C, et al. The challenge of nutritional profiling of a protein-free feed module for children on low protein tube feeds with organic acidaemias. J Hum Nutr Diet. 2017;30:292–301.
  • Daly A, Evans S, Ashmore C, et al. Refining low protein modular feeds for children on low protein tube feeds with organic acidaemias. Mol Genet Metab Rep. 2017;13:99–104.
  • Chapman KA, Gropman A, MacLeod E, et al. Mol Genet Metab. 2012;105:16–25.
  • Coppa GV, Zampini L, Galeazzi T, et al. Prebiotics in human milk: a review. Dig Liver Dis. 2006;38 Suppl 2(Suppl 2):S291–4.
  • Hascoet JM, Hubert C, Rochat F, et al. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr. 2011;52:756–762.
  • Daly A, Pinto A, Evans S, et al. Dietary practices in propionic acidemia: a European survey. Mol Genet Metab Rep. 2017;13:83–89.
  • O’Keefe SJ. Tube feeding, the microbiota, and Clostridium difficile infection. World J Gastroenterol. 2010;16:139–142.
  • Takeshita T, Yasui M, Tomioka M, et al. Enteral tube feeding alters the oral indigenous microbiota in elderly adults. Appl Environ Microbiol. 2011;77:6739–6745.
  • Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–585.
  • Miller MJ, Bostwick BL, Kennedy AD, et al. Chronic oral L-carnitine supplementation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions. JIMD Rep. 2016;30:39–44.
  • Arora T, Sharma R, Frost G. Propionate. Anti-obesity and satiety enhancing factor? Appetite. 2011;56:511–515.
  • Hosseini E, Grootaert C, Verstraete W, et al. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011;69:245–258.
  • Vinolo MA, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–876.
  • Sun Y, O’Riordan MX. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol. 2013;85:93–118.
  • Vogt JA, Pencharz PB, Tm W. L-Rhamnose increases serum propionate in humans. Am J Clin Nutr. 2004;80:89–94.
  • Fernandes J, Rao AV, Wolever TM. Different substrates and methane producing status affect short-chain fatty acid profiles produced by In vitro fermentation of human feces. J Nutr. 2000;130:1932–1936.
  • Michel C, Benard C, Lahaye M, et al. Algal oligosaccharides as functional foods: in vitro study of their cellular and fermentative effects. Sciences des Aliments, Lavoisier, Cachan (France). 1999.
  • Cheng HH, Lai MH. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats. J Nutr. 2000;130:1991–1995.
  • Grootaert C, Van Den Abbeele P, Marzorati M, et al. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2009;69:231–242.
  • Lopez HW, Levrat MA, Guy C, et al. Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats. J Nutr Biochem. 1999;10:500–509.
  • van de Wiele T, Boon N, Possemiers S, et al. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007;102:452–460.
  • Asano I, Hamaguchi K, Fujii S, et al. In vitro digestibility and fermentation of mannooligosaccharides from coffee mannan. Food Sci Technol Res. 2003;9:62–66.
  • Makelainen HS, Makivuokko HA, Salminen SJ, et al. The effects of polydextrose and xylitol on microbial community and activity in a 4-stage colon simulator. J Food Sci. 2007;72:M153–9.
  • Laerke HN, Jensen BB. D-tagatose has low small intestinal digestibility but high large intestinal fermentability in pigs. J Nutr. 1999;129:1002–1009.
  • Asano I, Ikeda Y, Fujii S, et al. Effects of mannooligosaccharides from coffee on microbiota and short chain fatty acids in rat cecum. Food Science and Technology Research. 2004;10:273–277.
  • Levrat MA, Remesy C, Demigne C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 1991;121:1730–1737.
  • Edwards CA, Ma E. Comparison of the effects of ispaghula and wheat bran on rat caecal and colonic fermentation. Gut. 1992;33:1229–1233.
  • Ferket PR, Parks CW, Jl G: Benefits of dietary antibiotic and mannanoligosaccharide supplementation for poultry. Proceedings Multi-State Poultry Feeding and Nutrition Conference. Indianapolis Indiana USA, 2002
  • Hossain MZ, Abe J-I, Hizukuri S. Multiple forms of β-mannanase from Bacillus sp. KK01. Enzyme and Microbial Technology. 1996;18:95–98.
  • Jie Z, Bang-Yao L, Ming-Jie X, et al. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr. 2000;72:1503–1509.
  • Nilsson U, Bjorck I. Availability of cereal fructans and inulin in the rat intestinal tract. J Nutr. 1988;118:1482–1486.
  • Nilsson U, Oste R, Jagerstad M, et al. Cereal fructans: in vitro and in vivo studies on availability in rats and humans. J Nutr. 1988;118:1325–1330.
  • Rumessen JJ, Bode S, Hamberg O, et al. Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. Am J Clin Nutr. 1990;52:675–681.
  • Rumessen JJ, Gudmand-Hoyer E. Fructans of chicory: intestinal transport and fermentation of different chain lengths and relation to fructose and sorbitol malabsorption. Am J Clin Nutr. 1998;68:357–364.
  • Green CJ. Fibre in enteral nutrition: a new era?. Nutr Hosp. 2002;17(Suppl 2):1–6.
  • Rios-Covian D, Gueimonde M, Duncan SH, et al. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and bifidobacterium adolescentis. FEMS Microbiol Lett. 2015;362:fnv176.
  • Belenguer A, Duncan SH, Calder AG, et al. Two routes of metabolic cross-feeding between bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006;72:3593–3599.
  • Grimaldi R, Swann JR, Vulevic J, et al. Fermentation properties and potential prebiotic activity of Bimuno(R) galacto-oligosaccharide (65 % galacto-oligosaccharide content) on in vitro gut microbiota parameters. Br J Nutr. 2016;116:480–486.
  • Sato T, Matsumoto K, Okumura T, et al. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiol Ecol. 2008;66:528–536.
  • Oozeer R, van Limpt K, Ludwig T, et al. Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am J Clin Nutr. 2013;98:561S–571S.
  • Knol J, Scholtens P, Kafka C, et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr. 2005;40:36–42.
  • MacDonald A, Cochrane B, Wopereis H, et al. Mol Genet Metab. 2011;104(Suppl):S55–9.
  • Rivera-Barahona A, Alonso-Barroso E, Pérez B, et al. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Molecular Genetics and Metabolism. 2017;122(1):43–50.
  • Peters HL, Pitt JJ, Wood LR, et al. Mouse models for methylmalonic aciduria. PLOS ONE. 2012;7:e40609.
  • Forny P, Schumann A, Mustedanagic M, et al. Novel mouse models of methylmalonic aciduria recapitulate phenotypic traits with a genetic dosage effect. J Biol Chem. 2016;291:20563–20573.
  • Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences. 2018;75:149–160.
  • Nguyen TLA, Vieira-Silva S, Liston A, et al. How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms. 2015;8:1–16.
  • Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13:517–528.
  • Schreiber J, Chapman KA, Summar ML, et al. Neurologic considerations in propionic acidemia. Mol Genet Metab. 2012;105:10–15.
  • Baker EH, Sloan JL, Hauser NS, et al. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol. 2015;36:194–201.
  • De Raeve L, De Meirleir L, Ramet J, et al. Acrodermatitis enteropathica-like cutaneous lesions in organic aciduria. J Pediatr. 1994;124:416–420.
  • Yannicelli S. Nutrition therapy of organic acidaemias with amino acid-based formulas: emphasis on methylmalonic and propionic acidaemia. J Inherit Metab Dis. 2006;29:281–287.
  • Brooks GA. Lactate shuttles in nature. Biochem Soc Trans. 2002;30:258–264.
  • Rios-Covian D, Ruas-Madiedo P, Margolles A, et al. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.
  • Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.
  • Ehrlich SD. The human gut microbiome impacts health and disease. C R Biol. 2016;339:319–323.
  • Srinivasjois R, Rao S, Patole S. Prebiotic supplementation in preterm neonates: updated systematic review and meta-analysis of randomised controlled trials. Clin Nutr. 2013;32:958–965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.