68
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets

, , &
Pages 719-731 | Received 18 Apr 2018, Accepted 23 Oct 2018, Published online: 31 Oct 2018

References

  • Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, et al. An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med. 2010;181:626–644.
  • Mellins RB, Balfour HH, Turino GM, et al. Failure of automatic control of ventilation (Ondine’s curse). Report of an infant born with this syndrome and review of the literature. Medicine (Baltimore). 1970;49:487–504.
  • Amiel J, Laudier B, Attie-Bitach T, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33:459–461.
  • Weese-Mayer DE, Berry-Kravis EM, Zhou L, et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A. 2003;123A:267–278.
  • Pattyn A, Morin X, Cremer H, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399:366–370.
  • Pattyn A, Goridis C, Brunet JF. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci. 2000;15:235–243.
  • Dubreuil V, Ramanantsoa N, Trochet D, et al. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A. 2008;105:1067–1072.
  • Carroll MS, Patwari PP, Kenny AS, et al. Residual chemosensitivity to ventilatory challenges in genotyped congenital central hypoventilation syndrome. J Appl Physiol (1985). 2014;116:439–450.
  • Straus C, Trang H, Becquemin MH, et al. Chemosensitivity recovery in Ondine’s curse syndrome under treatment with desogestrel. Respir Physiol Neurobiol. 2010;171:171–174.
  • Weese-Mayer DE, Berry-Kravis EM, Zhou L. Adult identified with congenital central hypoventilation syndrome–mutation in PHOX2b gene and late-onset CHS. Am J Respir Crit Care Med. 2005;171:88.
  • Antic NA, Malow BA, Lange N, et al. PHOX2B mutation-confirmed congenital central hypoventilation syndrome: presentation in adulthood. Am J Respir Crit Care Med. 2006;174:923–927.
  • Trochet D, de Pontual L, Straus C, et al. PHOX2B germline and somatic mutations in late-onset central hypoventilation syndrome. Am J Respir Crit Care Med. 2008;177:906–911.
  • Maloney MA, Kun SS, Keens TG, et al. Congenital central hypoventilation syndrome: diagnosis and management. Expert Rev Respir Med. 2018;12:283–292.
  • Matera I, Bachetti T, Puppo F, et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet. 2004;41:373–380.
  • Charnay AJ, Antisdel-Lomaglio JE, Zelko FA, et al. Congenital central hypoventilation syndrome: neurocognition already reduced in preschool-aged children. Chest. 2016;149:809–815.
  • Zelko FA, Stewart TM, Brogadir CD, et al. Congenital central hypoventilation syndrome: broader cognitive deficits revealed by parent controls. Pediatr Pulmonol. 2018;53:492–497.
  • Ramesh P, Boit P, Samuels M. Mask ventilation in the early management of congenital central hypoventilation syndrome. Arch Dis Child Fetal Neonatal Ed. 2008;93:F400–3.
  • Trochet D, O’Brien LM, Gozal D, et al. PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet. 2005;76:421–426.
  • Parodi S, Bachetti T, Lantieri F, et al. Parental origin and somatic mosaicism of PHOX2B mutations in congenital central hypoventilation syndrome. Hum Mutat. 2008;29:206.
  • Di Lascio S, Benfante R, Di Zanni E, et al. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat. 2018;39:219–236.
  • Berry-Kravis EM, Zhou L, Rand CM, et al. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med. 2006;174:1139–1144.
  • Sasaki A, Kanai M, Kijima K, et al. Molecular analysis of congenital central hypoventilation syndrome. Hum Genet. 2003;114:22–26.
  • Shimokaze T, Sasaki A, Meguro T, et al. Genotype-phenotype relationship in Japanese patients with congenital central hypoventilation syndrome. J Hum Genet. 2015;60:473–477.
  • García Teresa MA, Porto Abal R, Rodríguez Torres S, et al. Spanish patients with central hypoventilation syndrome included in the European Registry. The 2015 data. An Pediatr (Barc). 2017;86:255–263.
  • Trang H, Dehan M, Beaufils F, et al. The French congenital central hypoventilation syndrome registry: general data, phenotype, and genotype. Chest. 2005;127:72–79.
  • Amin R, Moraes TJ, Skitch A, et al. Diagnostic practices and disease surveillance in Canadian children with congenital central hypoventilation syndrome. Can Respir J. 2013;20:165–170.
  • Jennings LJ, Yu M, Rand CM, et al. Variable human phenotype associated with novel deletions of the PHOX2B gene. Pediatr Pulmonol. 2012;47:153–161.
  • Spielmann M, Hernandez-Miranda LR, Ceccherini I, et al. Mutations in MYO1H cause a recessive form of central hypoventilation with autonomic dysfunction. J Med Genet. 2017;54:754–761.
  • de Pontual L, Pelet A, Clement-Ziza M, et al. Epistatic interactions with a common hypomorphic RET allele in syndromic Hirschsprung disease. Hum Mutat. 2007;28:790–796.
  • Weese-Mayer DE, Bolk S, Silvestri JM, et al. Idiopathic congenital central hypoventilation syndrome: evaluation of brain-derived neurotrophic factor genomic DNA sequence variation. Am J Med Genet. 2002;107:306–310.
  • Amiel J, Salomon R, Attié T, et al. Mutations of the RET-GDNF signaling pathway in Ondine’s curse. Am J Hum Genet. 1998;62:715–717.
  • Bolk S, Angrist M, Xie J, et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nat Genet. 1996;13:395–396.
  • Fernández RM, Mathieu Y, Luzón-Toro B, et al. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One. 2013;8:e54043.
  • Al Dakhoul S. Haddad syndrome novel association with BRAF mutation. J Neonatal Perinatal Med. 2017;10:455–457.
  • Bachetti T, Borghini S, Ravazzolo R, et al. An in vitro approach to test the possible role of candidate factors in the transcriptional regulation of the RET proto-oncogene. Gene Expr. 2005;12:137–149.
  • Flora A, Lucchetti H, Benfante R, et al. Sp proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci. 2001;21:7037–7045.
  • Trochet D, de Pontual L, Estêvao MH, et al. Homozygous mutation of the PHOX2B gene in congenital central hypoventilation syndrome (Ondine’s Curse). Hum Mutat. 2008;29:770.
  • Repetto GM, Corrales RJ, Abara SG, et al. Later-onset congenital central hypoventilation syndrome due to a heterozygous 24-polyalanine repeat expansion mutation in the PHOX2B gene. Acta Paediatr. 2009;98:192–195.
  • Kwon MJ, Lee GH, Lee MK, et al. PHOX2B mutations in patients with Ondine-Hirschsprung disease and a review of the literature. Eur J Pediatr. 2011;170:1267–1271.
  • Chuen-Im P, Marwan S, Carter J, et al. Heterozygous 24-polyalanine repeats in the PHOX2B gene with different manifestations across three generations. Pediatr Pulmonol. 2014;49:E13–6.
  • Weese-Mayer DE, Rand CM, Zhou A, et al. Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res. 2017;81:192–201.
  • Di Zanni E, Adamo A, Belligni E, et al. Common PHOX2B poly-Alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta. 2017;1863:1770–1777.
  • Toyota T, Yoshitsugu K, Ebihara M, et al. Association between schizophrenia with ocular misalignment and polyalanine length variation in PMX2B. Hum Mol Genet. 2004;13:551–561.
  • McConville C, Reid S, Baskcomb L, et al. PHOX2B analysis in non-syndromic neuroblastoma cases shows novel mutations and genotype-phenotype associations. Am J Med Genet A. 2006;140:1297–1301.
  • Mosse YP, Laudenslager M, Khazi D, et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet. 2004;75:727–730.
  • Rand CM, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome: a neurocristopathy with disordered respiratory control and autonomic regulation. Clin Chest Med. 2014;35:535–545.
  • van Limpt V, Schramm A, van Lakeman A, et al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene. 2004;23:9280–9288.
  • Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124:4065–4075.
  • Dauger S, Pattyn A, Lofaso F, et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development. 2003;130:6635–6642.
  • Mong J, Panman L, Alekseenko Z, et al. Transcription factor-induced lineage programming of noradrenaline and motor neurons from embryonic stem cells. Stem Cells. 2014;32:609–622.
  • Coppola E, d’Autréaux F, Rijli FM, et al. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development. 2010;137:4211–4220.
  • Kang BJ, Chang DA, Mackay DD, et al. Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol. 2007;503:627–641.
  • Fan Y, Huang J, Duffourc M, et al. Transcription factor Phox2 upregulates expression of norepinephrine transporter and dopamine β-hydroxylase in adult rat brains. Neuroscience. 2011;192:37–53.
  • Stornetta RL, Moreira TS, Takakura AC, et al. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci. 2006;26:10305–10314.
  • Lo L, Morin X, Brunet JF, et al. Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron. 1999;22:693–705.
  • Adachi M, Browne D, Lewis EJ. Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol. 2000;19:539–554.
  • Borghini S, Bachetti T, Fava M, et al. The TLX2 homeobox gene is a transcriptional target of PHOX2B in neural-crest-derived cells. Biochem J. 2006;395:355–361.
  • Revet I, Huizenga G, Chan A, et al. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res. 2008;314:707–719.
  • Nagashimada M, Ohta H, Li C, et al. Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest. 2012;122:3145–3158.
  • Bachetti T, Di Paolo D, Di Lascio S, et al. PHOX2B-mediated regulation of ALK expression: in vitro identification of a functional relationship between two genes involved in neuroblastoma. PLoS One. 2010;5.
  • Cargnin F, Flora A, Di Lascio S, et al. PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism. J Biol Chem. 2005;280:37439–37448.
  • Di Lascio S, Belperio D, Benfante R, et al. Alanine expansions associated with congenital central hypoventilation syndrome impair PHOX2B Homeodomain-mediated dimerization and nuclear import. J Biol Chem. 2016;291:13375–13393.
  • Lavoie H, Debeane F, Trinh QD, et al. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum Mol Genet. 2003;12:2967–2979.
  • Radó-Trilla N, Arató K, Pegueroles C, et al. Key role of amino acid repeat expansions in the functional diversification of duplicated transcription factors. Mol Biol Evol. 2015;32:2263–2272.
  • Di Lascio S, Bachetti T, Saba E, et al. Transcriptional dysregulation and impairment of PHOX2B auto-regulatory mechanism induced by polyalanine expansion mutations associated with congenital central hypoventilation syndrome. Neurobiol Dis. 2013;50:187–200.
  • Bachetti T, Matera I, Borghini S, et al. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet. 2005;14:1815–1824.
  • Durand E, Dauger S, Pattyn A, et al. Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. Am J Respir Crit Care Med. 2005;172:238–243.
  • Trochet D, Hong SJ, Lim JK, et al. Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Hum Mol Genet. 2005;14:3697–3708.
  • Goridis C, Dubreuil V, Thoby-Brisson M, et al. Phox2b, congenital central hypoventilation syndrome and the control of respiration. Semin Cell Dev Biol. 2010;21:814–822.
  • Trochet D, Mathieu Y, Pontual L, et al. In Vitro studies of non poly alanine PHOX2B mutations argue against a loss-of-function mechanism for congenital central hypoventilation. Hum Mutat. 2009;30:E421–31.
  • Bachetti T, Bocca P, Borghini S, et al. Geldanamycin promotes nuclear localisation and clearance of PHOX2B misfolded proteins containing polyalanine expansions. Int J Biochem Cell Biol. 2007;39:327–339.
  • Parodi S, Di Zanni E, Di Lascio S, et al. The E3 ubiquitin ligase TRIM11 mediates the degradation of congenital central hypoventilation syndrome-associated polyalanine-expanded PHOX2B. J Mol Med (Berl). 2012;90:1025–1035.
  • Wu HT, Su YN, Hung CC, et al. Interaction between PHOX2B and CREBBP mediates synergistic activation: mechanistic implications of PHOX2B mutants. Hum Mutat. 2009;30:655–660.
  • Reiff T, Tsarovina K, Majdazari A, et al. Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci. 2010;30:905–915.
  • Moreira TS, Takakura AC, Czeisler C, et al. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J Neurophysiol. 2016;116:742–752.
  • Ramanantsoa N, Vaubourg V, Dauger S, et al. Ventilatory response to hyperoxia in newborn mice heterozygous for the transcription factor Phox2b. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1691–6.
  • Ramanantsoa N, Vaubourg V, Matrot B, et al. Effects of temperature on ventilatory response to hypercapnia in newborn mice heterozygous for transcription factor Phox2b. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2027–35.
  • Ramanantsoa N, Matrot B, Vardon G, et al. Impaired ventilatory and thermoregulatory responses to hypoxic stress in newborn phox2b heterozygous knock-out mice. Front Physiol. 2011;2:61.
  • Ramanantsoa N, Hirsch MR, Thoby-Brisson M, et al. Breathing without CO(2) chemosensitivity in conditional Phox2b mutants. J Neurosci. 2011;31:12880–12888.
  • Bollen B, Ramanantsoa N, Naert A, et al. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b. Physiol Behav. 2015;141:120–126.
  • Dubreuil V, Thoby-Brisson M, Rallu M, et al. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci. 2009;29:14836–14846.
  • Nobuta H, Cilio MR, Danhaive O, et al. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol. 2015;130:171–183.
  • Ruffault PL, D’Autréaux F, Hayes JA, et al. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO₂. Elife. 2015;4:e07051.
  • Guyenet PG, Bayliss DA, Stornetta RL, et al. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol. 2016;594:1529–1551.
  • Rudzinski E, Kapur RP. PHOX2B immunolocalization of the candidate human retrotrapezoid nucleus. Pediatr Dev Pathol. 2010;13:291–299.
  • Lavezzi AM, Weese-Mayer DE, Yu MY, et al. Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death. Auton Neurosci. 2012;170:12–19.
  • Roux JC, Panayotis N, Dura E, et al. Progressive noradrenergic deficits in the locus coeruleus of Mecp2 deficient mice. J Neurosci Res. 2010;88(7):1500–1509.
  • Weese-Mayer DE, Lieske SP, Boothby CM, et al. Autonomic dysregulation in young girls with Rett syndrome during nighttime in-home recordings. Pediatr Pulmonol. 2008;43:1045–1060.
  • Harper RM, Kumar R, Macey PM, et al. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome. Front Neurosci. 2015;9:415.
  • Di Zanni E, Bachetti T, Parodi S, et al. In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins. Neurobiol Dis. 2012;45:508–518.
  • Joubert F, Perrin-Terrin AS, Verkaeren E, et al. Desogestrel enhances ventilation in ondine patients: animal data involving serotoninergic systems. Neuropharmacology. 2016;107:339–350.
  • Boukari R, Laouafa S, Ribon-Demars A, et al. Ovarian steroids act as respiratory stimulant and antioxidant against the causes and consequences of sleep-apnea in women. Respir Physiol Neurobiol. 2017;239:46–54.
  • Marcouiller F, Boukari R, Laouafa S, et al. The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice. PLoS One. 2014;9:e100421.
  • Loiseau C, Osinski D, Joubert F, et al. The progestin etonogestrel enhances the respiratory response to metabolic acidosis in newborn rats. Evidence for a mechanism involving supramedullary structures. Neurosci Lett. 2014;567:63–67.
  • Matagne V, Ehinger Y, Saidi L, et al. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 2017;99:1–11.
  • Castrén E, Elgersma Y, Maffei L, et al. Treatment of neurodevelopmental disorders in adulthood. J Neurosci. 2012;32:14074–14079.
  • Shi Y, Stornetta RL, Stornetta DS, et al. Neuromedin B expression defines the mouse retrotrapezoid nucleus. J Neurosci. 2017;37:11744–11757.
  • Kumar NN, Velic A, Soliz J, et al. Regulation of breathing by CO₂ requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science. 2015;348:1255–1260.
  • Nattie E. Ondine Undone. N Engl J Med. 2015;373:573–575.
  • Straus C, Similowski T. Congenital central hypoventilation syndrome and desogestrel: a call for caution: addendum to “C. Straus, H. Trang, M.H. Becquemin, P. Touraine, T. Similowski, Chemosensitivity recovery in Ondine’s curse syndrome under treatment with desogestrel” [Respir. Physiol. Neurobiol. 171 (2010) 171–174]. Respir Physiol Neurobiol. 2011;178:357–358.
  • Di Lascio S, Saba E, Belperio D, et al. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line. Exp Cell Res. 2016;342:62–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.