85
Views
1
CrossRef citations to date
0
Altmetric
Review

Current opinion in the molecular genetics of Adams-Oliver syndrome

Pages 21-26 | Received 07 Sep 2018, Accepted 11 Dec 2018, Published online: 27 Dec 2018

References

  • Adams FH, Oliver CP. Hereditary deformities in man due to arrested development. J Hered. 1945;36:3–7.
  • Lehman A, Wuyts W, Patel MS. Adams-Oliver syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews. [Internet]. Seattle (WA): University of Washington, Seattle; 2016 April. Available from: https://www.ncbi.nlm.nih.gov/books/NBK355754/
  • Snape KM, Ruddy D, Zenker M, et al. The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects. Am J Med Genet A. 2009;149A(8):1860–1881.
  • Southgate L, Trembath RC. Chapter 183: ARHGAP31, DOCK6, RBPJ and EOGT and Adams-Oliver syndrome. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development: the molecular basis of clinical disorders of morphogenesis. 3rd. New York: Oxford University Press; 2016 June:1203–1209.
  • Hassed S, Li S, Mulvihill J, et al. Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype. Am J Med Genet A. 2017;173(3):790–800.
  • Digilio MC, Marino B, Baban A, et al. Cardiovascular malformations in Adams–Oliver syndrome. Am J Med Genet A. 2015;167A(5):1175–1177.
  • Southgate L, Sukalo M, Karountzos AS, et al. Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies. Circ Cardiovasc Genet. 2015;8(4):572–581.
  • Sukalo M, Tilsen F, Kayserili H, et al. DOCK6 mutations are responsible for a distinct autosomal-recessive variant of Adams-Oliver syndrome associated with brain and eye anomalies. Hum Mutat. 2015;36(11):1112.
  • Meester JAN, Sukalo M, Schröder KC, et al. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort. Hum Mutat. 2018;39(9):1246–1261.
  • Southgate L, Machado RD, Snape KM, et al. Gain-of-function mutations of ARHGAP31, a Cdc42/Rac1 GTPase regulator, cause syndromic cutis aplasia and limb anomalies. Am J Hum Genet. 2011;88(5):574–585.
  • Isrie M, Wuyts W, Van Esch H, et al. Isolated terminal limb reduction defects: extending the clinical spectrum of Adams-Oliver syndrome and ARHGAP31 mutations. Am J Med Genet A. 2014;164A(6):1576–1579.
  • Shaheen R, Faqeih E, Sunker A, et al. Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am J Hum Genet. 2011;89(2):328–333.
  • Lehman A, Stittrich AB, Glusman G. Diffuse angiopathy in Adams‐Oliver syndrome associated with truncating DOCK6 mutations. Am J Med Genet A. 2014;164A(10):2656–2662.
  • Hassed SJ, Wiley GB, Wang S, et al. RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet. 2012;91(2):391–395.
  • Shaheen R, Aglan M, Keppler-Noreuil K, et al. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet. 2013;92(4):598–604.
  • Cohen I, Silberstein E, Perez Y, et al. Autosomal recessive Adams–Oliver syndrome caused by homozygous mutation in EOGT, encoding an EGF domain-specific O-GlcNAc transferase. Eur J Hum Genet. 2014;22(3):374–378.
  • Stittrich AB, Lehman A, Bodian DL, et al. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet. 2014;95(3):275–284.
  • Meester JA, Southgate L, Stittrich AB, et al. Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet. 2015;97(3):475–482.
  • Tcherkezian J, Triki I, Stenne R, et al. The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA. Biol Cell. 2006;98(8):445–456.
  • LaLonde DP, Grubinger M, Lamarche-Vane N, et al. CdGAP associates with actopaxin to regulate integrin-dependent changes in cell morphology and motility. Curr Biol. 2006;16(14):1375–1385.
  • vMiyamoto Y, Yamauchi J, Sanbe A, et al. Dock6, a dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth. Exp Cell Res. 2007;313(4):791–804.
  • Wormer D, Deakin NO, Turner CE. CdGAP regulates cell migration and adhesion dynamics in two-and three-dimensional matrix environments. Cytoskeleton (Hoboken). 2012;69(9):644–658.
  • Caron C, DeGeer J, Fournier P, et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci Rep. 2016;6:27485.
  • Swartz EN, Sanatani S, Sandor GG, et al. Vascular abnormalities in Adams-Oliver syndrome: cause or effect? Am J Med Genet. 1999;82(1):49–52.
  • Cerikan B, Shaheen R, Colo GP, et al. Cell-intrinsic adaptation arising from chronic ablation of a key Rho GTPase regulator. Dev Cell. 2016;39(1):28–43.
  • Cerikan B, Schiebel E. Mechanism of cell-intrinsic adaptation to Adams-Oliver syndrome gene DOCK6 disruption highlights ubiquitin-like modifier ISG15 as a regulator of RHO GTPases. Small GTPases. 2017. [Epub ahead of print]. DOI:10.1080/21541248.2017.1297882
  • Kim K, Yang DK, Kim S, et al. miR-142-3p is a regulator of the TGFβ-mediated vascular smooth muscle cell phenotype. J Cell Biochem. 2015;116(10):2325–2333.
  • He Y, Northey JJ, Pelletier A, et al. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene. 2017;36(24):3490–3503.
  • Ogawa M, Sawaguchi S, Kawai T, et al. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem. 2015;290(4):2137–2149.
  • Sawaguchi S, Varshney S, Ogawa M, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand induced Notch signaling and vascular development in mammals. Elife. 2017;6:e24419.
  • MLPA®: an Introduction. Technology: why use MLPA®? MRC-Holland; 2018 [cited 2018 Nov 28]. Available from: https://www.mlpa.com/WebForms/WebFormMain.aspx?Tag=_hS-AvFINWhkPMYt9ZIZdCzsa02M7gmANJd4lBnGypB9MG6kYS4HSWA..
  • Shamseldin HE, Anazi S, Wakil SM, et al. Novel copy number variants and major limb reduction malformation: report of three cases. Am J Med Genet A. 2016;170A(5):1245–1250.
  • Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013;3(1):a006569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.