277
Views
6
CrossRef citations to date
0
Altmetric
Review

Progress in understanding Friedreich’s ataxia using human induced pluripotent stem cells

, , &
Pages 81-90 | Received 12 Oct 2018, Accepted 19 Dec 2018, Published online: 09 Jan 2019

References

  • Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303(1–2):1–12.
  • Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27(9):1133–1137.
  • Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–1427.
  • Durr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–1175.
  • Clark E, Butler JS, Isaacs CJ, et al. Selected missense mutations impair frataxin processing in Friedreich ataxia. Ann Clin Transl Neurol. 2017;4(8):575–584.
  • Long A, Napierala JS, Polak U, et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One. 2017;12(12):e0189990.
  • De Biase I, Rasmussen A, Monticelli A, et al. Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life. Genomics. 2007;90(1):1–5.
  • Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol. 2009;256(Suppl 1):9–17.
  • Colin F, Martelli A, Clemancey M, et al. Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. J Am Chem Soc. 2013;135(2):733–740.
  • Martelli A, Wattenhofer-Donze M, Schmucker S, et al. Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum Mol Genet. 2007;16(22):2651–2658.
  • Li Y, Lu Y, Polak U, et al. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet. 2015;24(24):6932–6943.
  • Groh M, Lufino MM, Wade-Martins R, et al. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10(5):e1004318.
  • Chutake YK, Lam C, Costello WN, et al. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol. 2014;76(4):522–528.
  • Chutake YK, Costello WN, Lam C, et al. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J Biol Chem. 2014;289(22):15194–15202.
  • Napierala JS, Li Y, Lu Y, et al. Comprehensive analysis of gene expression patterns in Friedreich’s ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers. Dis Model Mech. 2017;10(11):1353–1369.
  • Pianese L, Turano M, Lo Casale MS, et al. Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry. 2004;75(7):1061–1063.
  • Sacca F, Puorro G, Antenora A, et al. A combined nucleic acid and protein analysis in Friedreich ataxia: implications for diagnosis, pathogenesis and clinical trial design. PLoS One. 2011;6(3):e17627.
  • Wells RD. DNA triplexes and Friedreich ataxia. FASEB J. 2008;22(6):1625–1634.
  • Grabczyk E, Mancuso M, Sammarco MC. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res. 2007;35(16):5351–5359.
  • Saveliev A, Everett C, Sharpe T, et al. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature. 2003;422(6934):909–913.
  • Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2(10):551–558.
  • Soragni E, Gottesfeld JM. Translating HDAC inhibitors in Friedreich’s ataxia. Expert Opin Orphan Drugs. 2016;4(9):961–970.
  • Perdomini M, Hick A, Puccio H, et al. Animal and cellular models of Friedreich ataxia. J Neurochem. 2013;126(Suppl 1):65–79.
  • Puccio H. Multicellular models of Friedreich ataxia. J Neurol. 2009;256(Suppl 1):18–24.
  • Chandran V, Gao K, Swarup V, et al. Inducible and reversible phenotypes in a novel mouse model of Friedreich’s ataxia. eLife. 2017;6:e30054.
  • Anjomani Virmouni S, Ezzatizadeh V, Sandi C, et al. A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia. Dis Model Mech. 2015;8(3):225–235.
  • Al-Mahdawi S, Pinto RM, Ruddle P, et al. GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics. 2004;84(2):301–310.
  • Miranda CJ, Santos MM, Ohshima K, et al. Frataxin knockin mouse. FEBS Lett. 2002;512(1–3):291–297.
  • Chen K, Ho TS, Lin G, et al. Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. eLife. 2016;5:e20732.
  • Cossee M, Puccio H, Gansmuller A, et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet. 2000;9(8):1219–1226.
  • Klimanskaya I, Chung Y, Becker S, et al. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481–485.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872.
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920.
  • Malik N, Rao M. S. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33.
  • Jaworska E, Kozlowska E, Switonski PM, et al. Modeling simple repeat expansion diseases with iPSC technology. Cell Mol Life Sci. 2016;73(21):4085–4100.
  • Garreta E, Sanchez S, Lajara J, et al. Roadblocks in the Path of iPSC to the clinic. Curr Transplant Rep. 2018;5(1):14–18.
  • Ku S, Soragni E, Campau E, et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell. 2010;7(5):631–637.
  • Du J, Campau E, Soragni E, et al. Role of mismatch repair enzymes in GAA.TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem. 2012;287(35):29861–29872.
  • Ditch S, Sammarco MC, Banerjee A, et al. Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet. 2009;5(10):e1000704.
  • Dion V, Wilson JH. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet. 2009;25(7):288–297.
  • Halabi A, Ditch S, Wang J, et al. DNA mismatch repair complex MutSbeta promotes GAA.TTC repeat expansion in human cells. J Biol Chem. 2012;287(35):29958–29967.
  • Halabi A, Fuselier KTB, Grabczyk E. GAA*TTC repeat expansion in human cells is mediated by mismatch repair complex MutLgamma and depends upon the endonuclease domain in MLH3 isoform one. Nucleic Acids Res. 2018;46(8):4022–4032.
  • Gerhardt J, Bhalla AD, Butler JS, et al. Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep. 2016;16(5):1218–1227.
  • Polak U, Li Y, Butler JS, et al. Alleviating GAA repeat induced transcriptional silencing of the Friedreich’s ataxia gene during somatic cell reprogramming. Stem Cells Dev. 2016;25(23):1788–1800.
  • Liu J, Verma PJ, Evans-Galea MV, et al. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev. 2011;7(3):703–713.
  • Hu A, Rai M, Donatello S, et al. Oxidative stress and loss of Fe-S proteins in Friedreich ataxia induced pluripotent stem cell-derived PSNs can be reversed by restoring FXN expression with a benzamide HDAC inhibitor. bioRxiv. 2017. DOI:10.1101/221242.
  • Shan B, Xu C, Zhang Y, et al. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich’s ataxia patient iPSC-derived neural stem cells. J Proteome Res. 2014;13(11):4558–4566.
  • Soragni E, Miao W, Iudicello M, et al. Epigenetic therapy for Friedreich ataxia. Ann Neurol. 2014;76(4):489–508.
  • Bird MJ, Needham K, Frazier AE, et al. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One. 2014;9(7):e101718.
  • Marmolino D. Friedreich’s ataxia: past, present and future. Brain Res Rev. 2011;67(1–2):311–330.
  • Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8.
  • Lynch DR, Deutsch EC, Wilson RB, et al. Unanswered questions in Friedreich ataxia. J Child Neurol. 2012;27(9):1223–1229.
  • Hick A, Wattenhofer-Donze M, Chintawar S, et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech. 2013;6(3):608–621.
  • Eigentler A, Boesch S, Schneider R, et al. Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cells Dev. 2013;22(24):3271–3282.
  • Soragni E, Chou CJ, Rusche JR, et al. Mechanism of action of 2-Aminobenzamide HDAC inhibitors in reversing gene silencing in Friedreich’s ataxia. Front Neurol. 2015;6:44.
  • Codazzi F, Hu A, Rai M, et al. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum Mol Genet. 2016;25(22):4847–4855.
  • Erwin GS, Grieshop MP, Ali A, et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science. 2017;358(6370):1617–1622.
  • Li Y, Polak U, Bhalla AD, et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich’s ataxia. Mol Ther. 2015;23(6):1055–1065.
  • Igoillo-Esteve M, Gurgul-Convey E, Hu A, et al. Unveiling a common mechanism of apoptosis in beta-cells and neurons in Friedreich’s ataxia. Hum Mol Genet. 2015;24(8):2274–2286.
  • Payne RM, Wagner GR. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol. 2012;27(9):1179–1186.
  • Lynch DR, Regner SR, Schadt KA, et al. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther. 2012;10(6):767–777.
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–547.
  • Ramirez RL, Becker AB, Mazurkiewicz JE, et al. Pathology of intercalated discs in Friedreich cardiomyopathy. J Am Coll Cardiol. 2015;66(15):1739–1740.
  • Lee YK, Ho PW, Schick R, et al. Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflugers Arch. 2014;466(9):1831–1844.
  • Lee YK, Lau YM, Ng KM, et al. Efficient attenuation of Friedreich’s ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA. Int J Cardiol. 2016;203:964–971.
  • Crombie DE, Curl CL, Raaijmakers AJ, et al. Friedreich’s ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency. Aging (Albany NY). 2017;9(5):1440–1452.
  • Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev. 2014;10(2):177–190.
  • Pandolfo M. Friedreich ataxia. Semin Pediatr Neurol. 2003;10(3):163–172.
  • Fortuna F, Barboni P, Liguori R, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain. 2009;132(Pt 1):116–123.
  • Rance G, Corben L, Barker E, et al. Auditory perception in individuals with Friedreich’s ataxia. Audiol Neurootol. 2010;15(4):229–240.
  • Crombie DE, Van Bergen N, Davidson KC, et al. Characterization of the retinal pigment epithelium in Friedreich ataxia. Biochem Biophys Rep. 2015;4:141–147.
  • Lupoli F, Vannocci T, Longo G, et al. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 2018;592(5):718–727.
  • Vannocci T, Notario Manzano R, Beccalli O, et al. Adding a temporal dimension to the study of Friedreich’s ataxia: the effect of frataxin overexpression in a human cell model. Dis Model Mech. 2018;11: 6.
  • Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.
  • Knott GJJA. Doudna, CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866–869.
  • Xu X, Tay Y, Sim B, et al. Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Reports. 2017;8(3):619–633.
  • An MC, O’Brien RN, Zhang N, et al. Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 System. PLoS Curr. 2014;6. doi: 10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a.
  • Cinesi C, Aeschbach L, Yang B, et al. Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase. Nat Commun. 2016;7:13272.
  • Kim HJ, Kim S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321–334.
  • Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13(2):149–159.
  • Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13(6):691–705.
  • Mertens J, Paquola ACM, Ku M, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 2015;17(6):705–718.
  • Mertens J, Reid D, Lau S, et al. Aging in a dish: iPSC-Derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annu Rev Genet. 2018;52:271–293.
  • Tsunemoto R, Lee S, Szucs A, et al. Diverse reprogramming codes for neuronal identity. Nature. 2018;557(7705):375–380.
  • Pasca SP. The rise of three-dimensional human brain cultures. Nature. 2018;553(7689):437–445.
  • Vinci M, Gowan S, Boxall F, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29.
  • Ravi M, Paramesh V, Kaviya SR, et al. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26.
  • Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23(5):393–410.
  • Ware CB. Concise review: lessons from Naive human pluripotent cells. Stem Cells. 2017;35(1):35–41.
  • Huang K, Maruyama T, Fan G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell. 2014;15(4):410–415.
  • Manor YS, Massarwa R, Hanna JH. Establishing the human naive pluripotent state. Curr Opin Genet Dev. 2015;34:35–45.
  • Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.