139
Views
1
CrossRef citations to date
0
Altmetric
Review

Homozygous familial hypercholesterolemia and its treatment by inclisiran

ORCID Icon, ORCID Icon & ORCID Icon
Pages 197-208 | Received 14 Apr 2020, Accepted 16 Jun 2020, Published online: 14 Jul 2020

References

  • Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. The task force for the management of dyslipidaemias of the European society of cardiology (ESC) and european atherosclerosis society (EAS). Europ Heart J. 2020;41:11–188.
  • Wong ND, Amsterdam EA, Ballantyne C, et al. For the american society for preventive cardiology. Spotlight from the American society for preventive cardiology on key features of the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guidelines on the Management of Blood Cholesterol. Am J Cardiovasc Drugs. 2020;20(1):0–0.
  • Wilemon KA, Patel J, Aguilar-Salinas C, et al., Reducing the clinical and public health burden of familial hypercholesterolemia a global call to action. JAMA Cardiol. 5(2): 217–229. 2020.
  • Müller C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med Scand. 1938;89:75–84.
  • Brown MS, Goldstein JL. a receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.
  • Foody JM, Vishwanath R. Familial hypercholesterolemia/autosomal dominant hypercholesterole mia: molecular defects, the LDL-C continuum, and gradients of phenotypical severity. J Clin Lipidol. 2016;10:970–986.
  • Marais AD. Contrasting effects of sterols on metabolism. J Clin Pathol. 2018;71(10):863–864.
  • Reiss AB, Shah N, Muhieddine D, et al. PCSK9 in cholesterol metabolism: from bench to bedside. Clin Sci. 2018;132:1135–1153.
  • Khademi F, Momtazi-borojeni AA, Reiner Z, et al. PCSK9 and infection: a potentially useful or dangerous association? J Cell Physiol. 2018;233:2920–2927.
  • Paciullo F, Fallarino F, Bianconi V, et al. PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol. 2017;232:2330–2338.
  • Stöllberger C, Mertikian G, Stahl D, et al. Fatal recurrent staphylococcus aureus infection in a patient with an aortic endostent under alirocumab. Infect Dis Res Treat. 2019;12:1–4.
  • Ferrari F, Stein R, Motta MT, et al. PCSK9 inhibitors: clinical relevance, molecular mechanisms, and safety in clinical practice. Arq Bra Cardiol. 2019;112(4):453–460.
  • Ruscica M, Tokgozoğlu L, Corsinia a, et al. PCSK9 inhibition and inflammation: a narrative review. Atherosclerosis. 2019;288:146–155.
  • Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, et al. PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharm. 2019;5:237–245.
  • Tang ZH, Li TH, Peng J, et al. PCSK9: a novel inflammation modulator in atherosclerosis? J Cell Physiol. 2019;234:2345–2355.
  • Angelos D, Karagiannis AD, Liu M, et al. Pleiotropic anti-atherosclerotic effects of PCSK9 inhibitors. From molecular biology to clinical translation. Curr Atheroscler Rep. 2018;20:20.
  • Paciullo F, Momi S, Gresele P. PCSK9 in haemostasis and thrombosis: possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention. Thromb Haemost. 2019;119:359–367.
  • Filippatosa TD, Christopouloub EC, Elisaf MS. Pleiotropic effects of proprotein convertase subtilisin/kexin type 9 inhibitors? Curr Opin Lipidol. 2018;29:333–339.
  • Blanchard V, Khantalin I, Ramin-Mangata S, et al., PCSK9: from biology to clinical applications. Pathology. 51(2):177–183. 2019.
  • Glerup S, Schulz R, Laufs U, et al. Physiologic and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017;112:1–23.
  • Amput P, McSweeney C, Palee S, et al. The effects of proprotein convertase subtilisin/kexin type 9 inhibitors on lipid metabolism and cardiovascular function. Biomed Pharmacother. 2019;109:1171–1180.
  • Schmidt RJ, Zhang Y, Zhao Y, et al. A novel splicing variant of proprotein convertase subtilisin/kexin type 9. DNA Cell Biol. 2008;27:182–189.
  • Gustafsen C, Kjolby M, Nyegaard M, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310–318.
  • Chong M, Yoon G, Susan-Resiga D, et al. Hypolipidaemia among patients with PMM2-CDG is associated with low circulating PCSK9 levels: a case report followed by observational and experimental studies. J Med Gen. 2020;57:11–17.
  • Malo J, Parajuli a, Walker SM. PCSK9: from molecular biology to clinical applications. Ann Clin Biochem. 2020;57(1):7–25.
  • Fazio S, Minnier J, Shapiro MD, et al. Threshold effects of circulating angiopoietin-like 3 levels on plasma lipoproteins. J Clin Endocrinol Metab. 2017;102(9):3340–3348.
  • Gustafsen C, Olsen D, Vilstrup J, et al. Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun. 2017;8(1):503.
  • Kjellmo CA, Hovland a, Lappegård KT. CVD risk stratification in the PCSK9 era: is there a role for LDL subfractions? Diseases. 2018;45:0–0.
  • Leander K, Mälarstig a, Van’t Hooft FM, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circ. 2016;133:1230–1239.
  • Laugsand LE, Åsvold BO, Vatten LJ, et al. Circulating PCSK9 and risk of myocardial infarction. The HUNT study in norway. J Am Coll Cardiol Bas Transl Sci. 2016;1:568–575.
  • Xiao Y, Peng C, Huang W, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration and risk of cardiovascular events. systematic review and meta-analysis of prospective studies. Circ J. 2017;81:1150–1157.
  • Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, et al. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One. 2014;9:e106294.
  • Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, et al. PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;248:117–122.
  • Cohen JC, Boerwinkle E, Mosley TH, et al. Sequence variations in PCSK9, low LDL and protection against coronary heart disease. N Engl J Med. 2006;354:1264–1272.
  • El Khoury P, Elbitar S, Ghaleb Y, et al. PCSK9 mutations in familial hypercholesterolemia: from a groundbreaking discovery to anti-PCSK9 therapies. Curr Ath Rep. 2017;19(12):49.
  • Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26:1094–1100.
  • Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natnl Acad Sci USA. 2003;100(3):928–933.
  • Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Scie Transl Med. 2014;6:25843.
  • Momtazia AA, Banach M, Pirro M, et al. Regulation of PCSK9 by nutraceuticals. Pharmacol Res. 2017;120:157–169.
  • Stefanutti C, Thompson GR. Lipoprotein apheresis in the management of familial hypercholesterolaemia: historical perspective and recent advances. Curr Atheroscler Rep. 2015;17:465.
  • Klein-Szantoa AJP, Bassi DE. Keep recycling going: new approaches to reduce LDL-C. Biochem Pharmacol. 2019;164:336–341.
  • Pettersen D, Fjellström O. Small molecule modulators of PCSK9 – a literature and patent overview. Bioorg Med Chem Lett. 2018;28:1155–1160.
  • Xu S, Luo S, Zhu Z, et al. Small molecules as inhibitors of PCSK9: current status and future challenges. Eur J Med Chem. 2019;162:212e233.
  • Lintner NG, McClure KF, Petersen D, et al. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol. 2017;15(3):e2001882.
  • Ridker PM, Tardif JC, Amarenco P, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376:1517–1526.
  • Stein E, Toth P, Butcher MB, et al. Safety, tolerability and LDL-C reduction with a novel anti-PCSK9 recombinant fusion protein (LIB003): results of a randomized, double-blind, placebo-controlled, phase 2 study. Abstract European Atherosclerosis Society 87th Congress 2019-1100;287:e7.
  • Amirfakhryan H. Vaccination against atherosclerosis: an overview. Hell J Cardiol. 2019;S1109-9666: 30125–3.
  • Weisshaar S, Zeitlinger M. Vaccines targeting PCSK9: a promising alternative to passive immunization with monoclonal antibodies in the management of hyperlipidaemia? Drugs. 2018;78(8):799–808.
  • Wu D, Zhou Y, Pan Y, et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart Assoc. 2020;9(1):014358.
  • Momtazi-Borojeni AA, Nik ME, Jaafari MR, et al. Effects of immunization against PCSK9 in an experimental model of breast cancer. Arch Med Sci. 2019;15(3):570–579.
  • Wang X, Musunuru K. Angiopoietin-like 3 from discovery to therapeutic gene editing. J Am Coll Cardiol Bas Transl Sci. 2019;4:755–762.
  • Gaudet D, Gipe DA, Pordy R, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377:296–297.
  • Gemphire Therapeutics. Gemphire announces interim LDL-C lowering data from COBALT-1 phase 2b clinical trial. News release; 2017 [cited 2020 Jun 12] Available from: https://globenewswire.com/news-release/2017/01/30/911895/0/en/Gemphire-Announces-Interim-LDL-C-Lowering-Data-from-COBALT-1Phase-2b-Clinical-Trial.html
  • Gaudet D, Durst R, Lepor N, et al. Usefulness of gemcabene in homozygous familial hypercholesterolemia (from COBALT-1). Am J Cardiol. 2019;124:1876–1880.
  • Blom DJ, Raal FJ, Santos RD, et al. Lomitapide and mipomersen—inhibiting microsomal triglyceride transfer protein (MTP) and apoB100 synthesis. Curr Atheroscler Rep. 2019;21:48.
  • Ajufo E, Rader DJ. New therapeutic approaches for familial hypercholesterolemia. Ann Rev Med. 2018;69:113–131.
  • Bernards R. Exploring the uses of RNAi-gene knockdown and the nobel prize. N Engl J Med. 2006;355:2391–2393.
  • German CA, Shapiro MD. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs. 2020;34(1):1–9.
  • Ghosh GC, Bandyopadhyay D, Ghosh RK, et al. Effectiveness and safety of inclisiran, a novel long-actingRNA therapeutic inhibitor of proprotein convertase subtilisin/kexin9. Am J Cardiol. 2018;122:1272–1277.
  • Raal F, Lepor N, Kallend D, et al. Inclisiran durably lowers LDL-C and PCSK9 expression in subjects with homozygous familial hypercholesterolemia: the Orion-2 pilot study. Circ. 2020;141:1829–1831.
  • A study of inclisiran in participants with homozygous familial hypercholesterolemia (HoFH) (ORION-5). cited 2020 feb 18]. Available from: clinicaltrials.gov/ct2/show/NCT03851705
  • Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–1440.
  • Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–1530.
  • Blom DJ, Marais AD. Evolocumab for the treatment of homozygous familial hypercholesterolaemia. Expert Opin Orp Drugs. 2016;4(7):789–798.
  • Luirink IK, Wiegman a, Kusters M, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–1556.
  • [cited 2020 Jun 12] Available from: https://www.gov.uk/government/news/new-heart-disease-drug-to-be- made-available-for-nhs-patients
  • West R, Gibson P, Lloyd J. Treatment of homozygous familial hypercholesterolaemia: an informative sibship. Brit Med J (Clin Res Ed). 1985;291(6502):1079–1080.
  • Thompson GR, Blom DJ, Marais AD, et al. Survival in homozygous familial hypercholesterolaemia is determined by the on-treatment level of serum cholesterol. Eur Heart J. 2018;(14):1162–1168. DOI:10.1093/eurheartj/ehx317
  • Gagné C, Gaudet D, Bruckert E. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circ. 2002;105(21):2469–2475.
  • Marais AD, Naoumova RP, Firth JC, et al. Decreased production of low density lipoprotein by atorvastatin after apheresis in homozygous familial hypercholesterolaemia. J Lipid Res. 1997;38:2071–2078.
  • Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–350.
  • Sokolov V, Helmlinger G, Nilsson C, et al. Comparative quantitative systems pharmacology modelling of anti-PCSK9 therapeutic modalities in hypercholesterolemia. J Lipid Res. 2019;60:1610–1621.
  • Wang W, Jiang L, Chen PP, et al. a case of sitosterolemia misdiagnosed as familial hypercholesterolemia: a 4-year follow-up. J Clin Lipidol. 2018;12(1):236–239.
  • Muntoni S, Pisciotta L, Muntoni S, et al. Pharmacological treatment of a sardinian patient affected by autosomal recessive hypercholesterolemia (ARH). J Clin Lipidol. 2015;9(1):103–106.
  • D’Erasmo L, Minicocci I, Nicolucci a, et al. Autosomal recessive hypercholesterolemia: long-term cardiovascular outcomes. J Am Coll Cardiol. 2018;71(3):279–288. Erratum in: J Am Coll Cardiol 71 (9):1058(2018).
  • Andersen L, Davis T, Testa H, et al. PCSK9 inhibitor therapy in homozygous familial defective apolipoprotein B-100 due to APOB R3500Q: a case report. J Clin Lipidol. 2017;11:1471–1474.
  • Linnik MD, O’Rourke AM, Crowther MA. Pharmacokinetics of high-dose abetimus sodium in normal subjects with specific assessment of effect on coagulation. J Clin Pharmacol. 2008;48:909–918.
  • van de Water FM, Boerman OC, Wouterse AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Disp. 2006;34(8):1393–1397.
  • van Poelgeest EP, Reinout M, Swart RM, et al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9. Am J Kidney Dis. 2013;62(4):796–800.
  • Crosby JR, Zhao C, Zhang H, et al. Reversing antisense oligonucleotide activity with a sense oligonucleotide antidote: proof of concept targeting prothrombin. Nucl Acid Ther. 2015;25(6):297–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.