158
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting the IL-2 pathway for the treatment of mucosal melanoma

, , ORCID Icon &
Pages 34-47 | Received 26 Oct 2021, Accepted 07 Oct 2022, Published online: 16 Oct 2022

References

  • Spencer KR, Mehnert JM. Mucosal melanoma: epidemiology, biology and treatment. In: Kaufman HL, Mehnert JM, editors. Melanoma. Cham: Springer International Publishing; 2016. p. 295–320.
  • Tyrrell H, Payne M. Combatting mucosal melanoma: recent advances and future perspectives. Melanoma Manag. 2018;5(3):MMT11–MMT11.
  • Postow MA, Hamid O, Carvajal RD. Mucosal melanoma: pathogenesis, clinical behavior, and management. Curr Oncol Rep. 2012 Oct;14(5):441–448.
  • Lerner BA, Stewart LA, Horowitz DP, et al. Mucosal melanoma: new insights and therapeutic options for a unique and aggressive disease. Oncology (Williston Park). 2017;31(11):e23–e32.
  • Luna-Ortiz K, Aguilar-Romero M, Villavicencio-Valencia V, et al. Comparative study between two different staging systems (AJCC TNM VS BALLANTYNE’S) for mucosal melanomas of the head & neck. Medicina Oral Patología Oral y Cirugia Bucal. 2016. DOI:10.4317/medoral.21132.
  • Lydiatt W, O’Sullivan B, Patel S. Major changes in head and neck staging for 2018. Am Soc Clin Oncol Educat Book. 2018;38:505–514. DOI:10.1200/EDBK_199697
  • Nenclares P, Ap Dafydd D, Bagwan I, et al. Head and neck mucosal melanoma: the United Kingdom national guidelines. Eur J Cancer. 2020 ;138:11–18.
  • Carvajal RD, Spencer SA, Lydiatt W. Mucosal melanoma: a clinically and biologically unique disease entity. J National Compr Cancer Network. 2012;10(3):345–356.
  • Yeh JJ, Shia J, Hwu WJ, et al. The role of abdominoperineal resection as surgical therapy for anorectal melanoma. Ann Surg. 2006;244(6):1012–1017.
  • Patel SG, Prasad ML, Escrig M, et al. Primary mucosal malignant melanoma of the head and neck. Head Neck. 2002;24(3):247–257.
  • Temam S, Mamelle G, Marandas P, et al. Postoperative radiotherapy for primary mucosal melanoma of the head and neck. Cancer. 2005;103(2):313–319.
  • Furney SJ, Turajlic S, Stamp G, et al. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma. J Pathol. 2013;230(3):261–269.
  • Nassar KW, Tan AC. The mutational landscape of mucosal melanoma. Semin Cancer Biol. 2020;61:139–148.
  • Zhou R, Shi C, Tao W, et al. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations. Clin Cancer Res. 2019;25(12):3548–3560.
  • Hintzsche JD, Gorden NT, Amato CM, et al. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma. Melanoma Res. 2017;27(3):189–199.
  • Newell F, Kong Y, Wilmott JS, et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun. 2019;10(1). DOI:10.1038/s41467-019-11107-x.
  • Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–180.
  • Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–819.
  • Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–6828.
  • Curtin JA, Busam K, Pinkel D, et al. Somatic activation of KIT in distinct subtypes of melanoma. J clin oncol. 2006;24(26):4340–4346.
  • Novak N, Haberstok J, Bieber T, et al. The immune privilege of the oral mucosa. Trends Mol Med. 2008 May;14(5):191–198.
  • Passarelli A, Mannavola F, Stucci LS, et al. Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget. 2017;8(62):106132–106142.
  • Eddy K, Chen S. Overcoming immune evasion in melanoma. Int J Mol Sci. 2020;21(23):8984.
  • Tucci M, Passarelli A, Mannavola F, et al. Immune system evasion as hallmark of melanoma progression: the role of dendritic cells. Front Oncol. 2019;9(1148). DOI:10.3389/fonc.2019.01148.
  • Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020 ;30(6):507–519.
  • Liu D, Yang X, Wu X. Tumor immune microenvironment characterization identifies prognosis and immunotherapy-related gene signatures in melanoma. Front Immunol. 2021;12:663495.
  • Morgan D, Ruscetti F, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–1008.
  • Rosenberg SA, Yang JC, White DE, et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann Surg. 1998 Sep;228(3):307–319.
  • Lotze MT, Chang AE, Seipp CA, et al. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. Jama. 1986;256(22):3117–3124.
  • Busse D, De La Rosa M, Hobiger K, et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc Nat Acad Sci. 2010;107(7):3058–3063.
  • Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–659.
  • Permanyer M, Bošnjak B, Glage S, et al. Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cell Mol Immunol. 2021;18(2):398–414.
  • Paciucci PA, Holland JF, Glidewell O, et al. Recombinant interleukin-2 by continuous infusion and adoptive transfer of recombinant interleukin-2-activated cells in patients with advanced cancer. J Clin Oncol. 1989 Jul;7(7):869–878.
  • Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–5458.
  • Heppt MV, Goldscheider I, Tietze JK, et al. Intralesional interleukin-2 for unresectable mucosal melanoma refractory to nivolumab. Cancer Immunol Immunother. 2017 Oct;66(10):1377–1378.
  • Azoury SC, Crompton JG, Straughan DM, et al. Unknown primary nasopharyngeal melanoma presenting as severe recurrent epistaxis and hearing loss following treatment and remission of metastatic disease: a case report and literature review. Int J Surg Case Rep. 2015;10:232–235.
  • Sun C-Z, Q-L L, Z-D H, et al. Treatment and prognosis in sinonasal mucosal melanoma: a retrospective analysis of 65 patients from a single cancer center. Head Neck. 2014;36(5):675–681.
  • Buchbinder EI, Gunturi A, Perritt J, et al. A retrospective analysis of high-dose Interleukin-2 (HD IL-2) following Ipilimumab in metastatic melanoma. J Immunother Cancer. 2016;4(1):52.
  • Dutcher JP, Schwartzentruber DJ, Kaufman HL, et al. High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. J Immunother Cancer. 2014;2(1). DOI:10.1186/s40425-014-0026-0.
  • Meng D, Carvajal RD. KIT as an oncogenic driver in melanoma: an update on clinical development. Am J Clin Dermatol. 2019;20(3):315–323.
  • Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006;24(7):1169–1177.
  • Barron L, Dooms H, Hoyer KK, et al. Cutting edge: mechanisms of IL-2–dependent maintenance of functional regulatory T CELLS. J Immunol. 2010;185(11):6426–6430.
  • Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180–190.
  • Choudhry H, Helmi N, Abdulaal WH, et al. Prospects of IL-2 in cancer immunotherapy. Biomed Res Int. 2018;2018:9056173.
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107(6):2409–2414.
  • Malek TR. The biology of Interleukin-2. Annu Rev Immunol. 2008;26(1):453–479.
  • Yi JH, Yi SY, Lee HR, et al. Dacarbazine-based chemotherapy as first-line treatment in noncutaneous metastatic melanoma: multicenter, retrospective analysis in Asia. Melanoma Res. 2011;21(3):223–227.
  • Serrone L, Zeuli M, Sega FM, et al. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res. 2000 Mar;19(1):21–34.
  • Mattia G, Puglisi R, Ascione B, et al. Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis. 2018;9(2). DOI:10.1038/s41419-017-0059-7
  • Lian B, Guo J. Adjuvant therapy of mucosal melanoma. Chin Clin Oncol. 2014;3(3):10.
  • Chapman PB, Einhorn LH, Meyers ML, et al. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J clin oncol. 1999;17(9):2745.
  • Chacon JA, Schutsky K, Powell DJ. The impact of chemotherapy, radiation and epigenetic modifiers in cancer cell expression of immune inhibitory and stimulatory molecules and anti-tumor efficacy. Vaccines (Basel). 2016;4(4). DOI:10.3390/vaccines4040043
  • Opzoomer JW, Sosnowska D, Anstee JE, et al. Cytotoxic chemotherapy as an immune stimulus: a molecular perspective on turning up the immunological heat on cancer. Front Immunol. 2019;10(1654). DOI:10.3389/fimmu.2019.01654
  • Yan X, Sheng X, Chi Z, et al. Randomized phase II study of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced mucosal melanoma. J clin oncol. 2021;39(8):881–889.
  • Apetoh L, Ladoire S, Coukos G, et al. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol. 2015;26(9):1813–1823.
  • Ugurel S, Hildenbrand R, Zimpfer A, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005;92(8):1398–1405.
  • Kim KB, Alrwas A. Treatment of KIT -mutated metastatic mucosal melanoma. Chin Clin Oncol. 2014;3(3):12.
  • Carvajal RD. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327.
  • Woodman SE, Trent JC, Stemke-Hale K, et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8(8):2079–2085.
  • Zhu Y, Si L, Kong Y, et al. Response to sunitinib in Chinese KIT-mutated metastatic mucosal melanoma. J clin oncol. 2009;27(15_suppl):e20017–e17.
  • Fellner C. Ipilimumab (Yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P T. 2012 Sep;37(9):503–530.
  • Hodi FS, Corless CL, Giobbie-Hurder A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J clin oncol. 2013;31(26):3182–3190.
  • Del Vecchio M, Simeone E, Sileni VC, et al. 1130P - efficacy and safety of ipilimumab in patients with pretreated, mucosal melanoma: experience from Italian clinics participating in the European Expanded Access Programme (EAP). Ann Oncol. 2012;23:ix368.
  • Postow MA, Luke JJ, Bluth MJ, et al. Ipilimumab for patients with advanced mucosal melanoma. Oncologist. 2013;18(6):726–732.
  • Kuo JC. Immune checkpoint inhibitors in the treatment of advanced mucosal melanoma. Melanoma Manag. 2017;4(3):161–167.
  • Hamid O, Robert C, Ribas A, et al. Antitumour activity of pembrolizumab in advanced mucosal melanoma: a post-hoc analysis of KEYNOTE-001, 002, 006. Br J Cancer. 2018;119(6):670–674.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.
  • D’Angelo SP, Larkin J, Sosman JA, et al. Efficacy and safety of nivolumab alone or in combination with ipilimumab in patients with mucosal melanoma: a pooled analysis. J clin oncol. 2017;35(2):226–235.
  • Shoushtari AN, Wagstaff J, Ascierto PA, et al. CheckMate 067: long-term outcomes in patients with mucosal melanoma. J clin oncol. 2020;38(15_suppl):10019.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–1546.
  • Asher N, Ben-Betzalel G, Lev-Ari S, et al. Real world outcomes of ipilimumab and nivolumab in patients with metastatic melanoma. Cancers (Basel). 2020;12(8):2329.
  • Iedpd S, Ahmed T, Lo S, et al. Clinical models to predict response and survival in metastatic melanoma (MM) patients (pts) treated with anti-PD-1 alone (PD1) or combined with ipilimumab (IPI+PD1). J clin oncol. 2019;37(15_suppl):9542.
  • Sheng X, Yan X, Chi Z, et al. Axitinib in combination with toripalimab, a humanized immunoglobulin g4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: an open-label phase IB trial. J clin oncol. 2019;37(32):2987–2999.
  • Johnston SR, Constenla DO, Moore J, et al. Randomized phase II trial of BCDT [carmustine (BCNU), cisplatin, dacarbazine (DTIC) and tamoxifen] with or without interferon alpha (IFN-alpha) and interleukin (IL-2) in patients with metastatic melanoma. Br J Cancer. 1998;77(8):1280–1286.
  • Su PJ, Chen JS, Liaw CC, et al. Biochemotherapy with carmustine, cisplatin, dacarbazine, tamoxifen and low-dose interleukin-2 for patients with metastatic malignant melanoma. Chang Gung Med J. 2011 Sep-Oct;34(5):478–486.
  • Bartell HL, Bedikian AY, Papadopoulos NE, et al. Biochemotherapy in patients with advanced head and neck mucosal melanoma. Head Neck. 2008;30(12):1592–1598.
  • Harting MS, Kim KB. Biochemotherapy in patients with advanced vulvovaginal mucosal melanoma. Melanoma Res. 2004 Dec;14(6):517–520.
  • Davar D, Ding F, Saul M, et al. High-dose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. J Immunother Cancer. 2017;5(1). DOI:10.1186/s40425-017-0279-5.
  • Kim KB, Sanguino AM, Hodges C, et al. Biochemotherapy in patients with metastatic anorectal mucosal melanoma. Cancer. 2004;100(7):1478–1483.
  • Rafei M, Fidai S, Merchant R, et al. MDNA109: effect of an interleukin-2 superkine on CD8 T-cell properties in the tumor microenvironment. J clin oncol. 2019;37(15_suppl):e14220–e20.
  • Sun Z, Ren Z, Yang K, et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat Commun. 2019;10(1). DOI:10.1038/s41467-019-11782-w.
  • Caudana P, Núñez NG, De La Rochere P, et al. IL2/Anti-IL2 complex combined with CTLA-4, but not PD-1, blockade rescues antitumor NK cell function by regulatory T-cell modulation. Cancer Immunol Res. 2019;7(3):443–457.
  • Sahin D, Arenas-Ramirez N, Rath M, et al. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat Commun. 2020;11(1):6440.
  • Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol. 2015;36(12):763–777.
  • Charych D, Khalili S, Dixit V, et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One. 2017;12(7):e0179431.
  • Bentebibel SE, Hurwitz ME, Bernatchez C, et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019;9(6):711–721.
  • Diab A, Tykodi SS, Daniels GA, et al. Bempegaldesleukin plus nivolumab in first-line metastatic melanoma. J Clin Oncol. 2021;39(26): ;Jco2100675.
  • Bristol Myers Squibb and Nektar announce update on phase 3 PIVOT IO-001 trial evaluating bempegaldesleukin (BEMPEG) in combination with Opdivo (nivolumab) in previously untreated unresectable or metastatic melanoma. News release. March 14, 2022. Available from : https://bit.ly/36YiiOH, Accessed Annotation: Recent setbacks in a bempegaldesleukin clinical trial highlight the challenges associated with treating aggressive melanomas March 14, 2022
  • Lopes JE, Fisher JL, Flick HL, et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer. 2020;8(1):e000673.
  • Powderly J, Carthon B, Ernstoff M, et al. 373 Phase 1/2 study of subcutaneously administered ALKS 4230, a novel engineered cytokine, as monotherapy and in combination with pembrolizumab, in patients with advanced solid tumors: ARTISTRY-2. J Immunother Cancer. 2020;8(Suppl 3):A227–A27.
  • Vaishampayan UN, Ernstoff MS, Velcheti V, et al. A phase I trial of ALKS 4230, an engineered cytokine activator of NK and effector T cells, in patients with advanced solid tumors. J clin oncol. 2017;35(15_suppl):3111–3112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.