505
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Review: main chain hydrogen-bonded liquid crystalline polymers

Pages 28-46 | Received 30 Jan 2014, Accepted 28 May 2014, Published online: 07 Jul 2014

References

  • Cox JD, Pilcher D. Thermochemistry of organic and organometallic compounds. New York: Academic Press; 1970.
  • Domalski ES. Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S. J Phys Chem Ref Data. 1972;1:221–278.
  • March J. Advanced organic chemistry. New York: Wiley; 1992.
  • Chandrasekhar S. Liquid crystals. Cambridge: Cambridge University; 1993.
  • Collins PJ, Hird M. Introduction to liquid crystals: chemistry and physics. Philadelphia: Taylor & Francis; 1997.
  • Lester CL, Guymon CA. Phase behavior and polymerization kinetics of a semifluorinated lyotropic liquid crystal. Macromolecules. 2000;33:5448–5454. doi: 10.1021/ma000197f
  • Gin DL, Gu W, Pindzola BA, Zhou W-J. Polymerized lyotropic liquid crystal assemblies for materials applications. Acc Chem Res. 2001;34:973–980. doi: 10.1021/ar000140d
  • Ruckstein E, Manciu M. On the stability of lyotropic lamellar liquid crystals and the thicknesses of their lamellae. Langmuir. 2001;17:5464–5478. doi: 10.1021/la010385e
  • Kanie K, Sugimoto T. Organic-inorganic hybrid liquid crystals:? hybridization of calamitic liquid-crystalline amines with monodispersed anisotropic TiO2 nanoparticles. J Am Chem Soc. 2003;125:10518–10519. doi: 10.1021/ja0357691
  • Kumar S, Varshney SK. Design and synthesis of discotic nematic liquid crystals. Org Lett. 2002;4:157–159. doi: 10.1021/ol010200v
  • Sekine T, Niori T, Sone M, Watanabe J, Choi S-W, Takanishi Y, Takezoe H. Origin of helix in achiral banana-shaped molecular systems. Jpn J Appl Phys. 1997;36:6455–6459. doi: 10.1143/JJAP.36.6455
  • Bloor D. Organic materials for non-linear optics II. Cambridge: Royal Society of Chemistry; 1991.
  • McCulloch A, Zhang W, Heeney, M, Bailey C, Giles M, Graham D, Shkunov M, Sparrowe D, Tierney S. Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. J Mater Chem. 2003;13:2436–2444. doi: 10.1039/b307764k
  • Nejati K, Rezvani Z. Syntheses, characterization and mesomorphic properties of new bis(alkoxyphenylazo)-substituted N,N′ salicylidene diiminato Ni(II), Cu(II) and VO(IV) complexes. New J Chem. 2003;27:1665–1669. doi: 10.1039/b305278h
  • Ritter OMS, da Silveira NP, Merlo AA. Synthesis and mesomorphic properties of side chain liquid-crystalline biphenyl-phenyl polyacrylates. J Braz Chem Soc. 2006;17:348–356. doi: 10.1590/S0103-50532006000200019
  • Adam W, Peters K, Peters E-M, Schambony SB. Diastereoselective and regioselective singlet-oxygen ene reaction of oxazolidine-substituted alkenes:? control through hydrogen bonding mediated by the urea functionality of chiral auxiliaries. J Am Chem Soc. 2000;122:7610–7611. doi: 10.1021/ja001113l
  • Alkorta I, Elguero J. Influence of intermolecular hydrogen bonds on the tautomerism of pyridine derivatives. J Org Chem. 2002;67:1515–1519. doi: 10.1021/jo016069m
  • Adam W, Wirth T. Hydroxy group directivity in the epoxidation of chiral allylic alcohols:? control of diastereoselectivity through allylic strain and hydrogen bonding. Acc Chem Res. 1999;32:703–710. doi: 10.1021/ar9800845
  • Wang C-J, Dong X-Q, Zhang Z-H, Xue Z-Y, Teng H-L. Highly anti-selective asymmetric nitro-mannich reactions catalyzed by bifunctional amine-thiourea-bearing multiple hydrogen-bonding donors. J Am Chem Soc. 2008;130:8606–8607. doi: 10.1021/ja803538x
  • Schalley CA, Weilandt T, Buggermann J, Vogtle F. Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Top Cur Chem. 2004;248:141–200. doi: 10.1007/b99913
  • MacGillvray LR. Organic synthesis in the solid state via hydrogen-bond-driven self-assembly. J Org Chem. 2008;73:3311–3317. doi: 10.1021/jo8001563
  • Kihara H, Kato T, Uryu T, Fréchet JMJ. Supramolecular liquid-crystalline networks built by self-assembly of multifunctional hydrogen-bonding molecules. Chem Mater. 1996;8:961–968. doi: 10.1021/cm9505456
  • Hao E, Lian T. Buildup of polymer/Au nanoparticle multilayer thin films based on hydrogen bonding. Chem Mater. 2000;12:3392–3396. doi: 10.1021/cm000565u
  • Herbert AJ. Transition temperatures and transition energies of the p-n-alkoxy benzoic acids, from n-propyl to n-octadecyl. Trans Faraday Soc. 1967;63:555–560. doi: 10.1039/tf9676300555
  • Jensen J, Grundy SC, Bretz SL, Hartley CS. Synthesis and characterization of self-assembled liquid crystals: p-alkoxybenzoic acids. J Chem Ed. 2011;88: 1133–1136. doi: 10.1021/ed101090t
  • Subhapriya P, Sadasivam K, Madhu Mohan ML, Vijayanand PS. Experimental and theoretical investigation of p-n alkoxy benzoic acid based liquid crystals – a DFT approach. Spectrochim Acta A Mol Biol Spectrosc. 2014;123:511–523. doi: 10.1016/j.saa.2014.01.074
  • Kato T, Fujishima A, Frechét JMJ. Self-assembly of a twin liquid crystalline complex through intermolecular hydrogen bondings. Chem Lett. 1990;19:919–922.
  • Kato T, Frechét JMJ. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J Am Chem Soc. 1989;111:8533–8534. doi: 10.1021/ja00204a044
  • Price DJ, Willis K, Richardson T, Ungar G, Bruce D. Hydrogen bonded liquid crystals from nitrophenols and alkoxystilbazoles. J Mater Chem. 1997;7:883–891. doi: 10.1039/a700575j
  • Treybig A, Weissflog W, Plass M, Kresse H. Hydrogen-bond induced liquid crystalline phases in compounds with a carbonyl group as proton acceptor. Mol Cryst Liq Cryst. 1997;300:127–141. doi: 10.1080/10587259708042343
  • Sideratou Z, Tsiourvas D, Paleos CM, Skoulios A. Liquid crystalline behaviour of hydrogen bonded complexes of a non-mesogenic anil with p-n-alkoxybenzoic acids. Liq Cryst. 1997;22:51–60. doi: 10.1080/026782997209676
  • Lin H., Ko CW, Guo K, Cheng TW. Supramolecular liquid crystals containing isoquinoline hydrogen-bonded acceptors. Liq Cryst. 1999;26:613–618. doi: 10.1080/026782999205083
  • Kato T. Molecular self-assembly organic versus inorganic approaches. Struct Bond. 2000;96:95–146. doi: 10.1007/3-540-46591-X_4
  • Kato T, Fréchet JMJ. Hydrogen bonding and the self-assembly of supramolecular liquid-crystalline materials. Macromol Symp. 1995;98:311–326. doi: 10.1002/masy.19950980127
  • Kato T, Mizoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol Rapid Commun. 2001;22:797–814. doi: 10.1002/1521-3927(20010701)22:11<797::AID-MARC797>3.0.CO;2-T
  • Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2005;46:38–68.
  • Paleos CM, Tsiourvas D. Thermotropic liquid crystals formed by intermolecular hydrogen bonding interactions. Angew Chem Int Ed. 1995;34:1696–1711. doi: 10.1002/anie.199516961
  • Paleos CM, Tsiourvas D. Supramolecular hydrogen-bonded liquid crystals. Liq Cryst. 2001;8:1127–1161. doi: 10.1080/02678290110039516
  • Tal'roze RV, Shtalova AM, Shandryuk GA. Development and stabilization of liquid crystalline phases in hydrogen-bonded systems. Polym Sci Ser B. 2009;51:57–83. doi: 10.1134/S1560090409030014
  • ten Brinke G, Ruokolainen J, Ikkala O. Supramolecular materials based upon hydrogen bonded polymers. Adv Polym Sci. 2007;207:113–177. doi: 10.1007/12_2006_111
  • Mossety-Leszczak B, Włodarska M. Liquid crystallinity in polymers – liquid crystalline epoxy resins. In: Iwan A, Schab-Balcerzak E, editors. Liquid crystalline organic compounds and polymers as materials of the XXI century: from synthesis to applications. Thiruvananthapuram: Transworld Research Network; 2011. p. 125–152.
  • Ober CK, Jin JI, Lenz RW. Liquid crystal polymers. V. Thermotropic polyesters with either dyad or triad aromatic ester mesogenic units and flexible polymethylene spacers in the main chain. Polym J. 1982;14:9–17. doi: 10.1295/polymj.14.9
  • Penczek P, Frisch K, Szczepaniak B, Rudnik E. Synthesis and properties of liquid crystalline polyurethanes. J Polym Sci A Polym Chem. 1993;31:1211–1220. doi: 10.1002/pola.1993.080310517
  • De Ruijter C, Mendes E, Boerstoel H, Picken SJ. Orientational order and mechanical properties of poly(amide-block-aramid) alternating block copolymer films and fibers. Polymer. 2006;47:8517–8526. doi: 10.1016/j.polymer.2006.10.006
  • Kato T. Hydrogen-bonded systems. In: Demus D, Goodby JW, Gray GW, Spiess HW, Vill V, editors. Handbook of liquid crystals, high molecular weight liquid crystals. Weinheim: Wiley-VCH; 2012. p. 969–981.
  • Billmeyer FW. Kirk-othmer encyclopedia of chemical technology. New York: Wiley; 1982.
  • Billmeyer FW. Textbook of polymer science. New York: Wiley; 1984.
  • Wittcoff HA, Reuben BG. Industrial organic chemiscals in perspective, part 1: raw materials and manufacture. New York: Wiley; 1989.
  • Lehn JM. Supramolecular chemistry – molecular information and the design of supramolecular materials. Makromol Chem Macromol Symp. 1993;69:1–17. doi: 10.1002/masy.19930690103
  • Lawrence DS, Jiang T, Levett M. Self-assembling supra- molecular complexes. Chem Rev. 1995;95:2229–2260. doi: 10.1021/cr00038a018
  • Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Supramolecular polymers. Chem Rev. 2001;101:4071–4098. doi: 10.1021/cr990125q
  • Armstrong G, Buggy M. Hydrogen-bonded supramolecular polymers: a literature review. J Mater Sci. 2005;40:547–559. doi: 10.1007/s10853-005-6288-7
  • Liu X, Jiang M. Optical Switching of self-assembly: micellization and micelle–hollow-sphere transition of hydrogen-bonded polymers. Angew Chem. 2006;118:3930–3934. doi: 10.1002/ange.200504364
  • Barrett CJ, Mamiya J, Yager KG, Ikeda T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Mater. 2007;2:1249–1261. doi: 10.1039/b705619b
  • Gao J, He Y, Liu F, Zhang X, Wang Z, Wang X. Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings. Chem Mater. 2007;19:3877–3881. doi: 10.1021/cm0707197
  • Rieth LR, Eaton RF, Coates GW. Polymerization of ureidopyrimidinone-functionalized olefins by using late-transition metal Ziegler–Natta catalysts: synthesis of thermoplastic elastomeric polyolefins. Angew Chem Int Ed. 2001;40:2153–2156. doi: 10.1002/1521-3773(20010601)40:11<2153::AID-ANIE2153>3.0.CO;2-W
  • Ikala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science. 2002;295:2407–2409. doi: 10.1126/science.1067794
  • Feldman K, Kade MJ, Meijer EW, Hawker CJ, Kramer EJ. Model transient networks from strongly hydrogen-bonded polymers. Macromolecules. 2009;42:9072–9081. doi: 10.1021/ma901668w
  • Lehn J-M. Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed. 1990;29:1304–1319. doi: 10.1002/anie.199013041
  • Sijbesma RP, Meijer EW. Quadruple hydrogen bonded systems. Chem Commun. 2003:5–16. doi: 10.1039/b205873c
  • Okano T, Bae YH, Jacobs H, Kim SW. Thermally on-off switching polymers for drug permeation and release. J Control Rel. 1990;11:255–265. doi: 10.1016/0168-3659(90)90138-J
  • Binder W. Hydrogen bonded polymers. New York: Springer; 2007.
  • Kato T. Supramolecular liquid-crystalline materials: molecular self-assembly and self-organization through intermolecular hydrogen bonding. Supramol Sci. 1996;3: 53–59. doi: 10.1016/0968-5677(96)00026-0
  • Kato T, Hirota N, Fujishima A, Fréchet JMJ. Supramolecular hydrogen-bonded liquid–crystalline polymer complexes. Design of side-chain polymers and a host–guest system by noncovalent interactions. J Polym Sci A. 1996;34:57–62.
  • Kato T, Kihara H, Ujiie S, Uryu T, Fréchet JMJ. Structures and properties of supramolecular liquid-crystalline side-chain polymers built through intermolecular hydrogen bonds. Macromolecules. 1996;29:8734–8739. doi: 10.1021/ma9609341
  • Yue Z, Guoxing Y, Roche P. Blends of side-chain liquid crystalline polymers: towards self-assembled interpenetrating networks. Polymer. 1999;40:3025–3031. doi: 10.1016/S0032-3861(98)00535-7
  • Pollino JM, Weck M. Non-covalent side-chain polymers: design principles, functionalization strategies, and perspectives. Chem Soc Rev. 2005;34:193–207. doi: 10.1039/b311285n
  • Weck M. Side-chain functionalized supramolecular polymers. Polym Int. 2007;56:453–460. doi: 10.1002/pi.2200
  • Liang T-C, Lin H-C. Study of supramolecular side-chain and cross-linking polymers by complexation of various H-donor acids with H-acceptor copolymers containing pendent carbazole and fluorescent pyridyl units. J Polym Sci A. 2009;47:2734–2753. doi: 10.1002/pola.23358
  • Hammond MR, Mezzenga R. Supramolecular routes towards liquid crystalline side-chain polymers. Soft Mater. 2008;4:952–961. doi: 10.1039/b719672e
  • Kato T. Supramolecular liquid crystal polymers. Formation of molecular self-organized structures and their functionalization. Kobunshi Robunshu. 1997;54:855–862.
  • Zimmerman N, Moore JS, Zimmerman C. Polymer chemistry comes full circle. Chem Ind. 1998;15: 604–610.
  • Sijbesma RP, Meijer EW. Self-assembly of well-defined structures by hydrogen bonding. Curr Opin Colloid Interf Sci. 1999;4:24–32. doi: 10.1016/S1359-0294(99)00011-4
  • Sherrington DCP, Taskinen KA. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem Soc Rev. 2001;30: 83–93. doi: 10.1039/b008033k
  • Perron ME, Monchamp F, Duval H, Boils-Boissier D, Wuest JD. Controlling the assembly of hydrogen-bonded supramolecular polymers by the strategy of molecular tectonics. Pure Appl Chem. 2004;76:1345–1353. doi: 10.1351/pac200476071345
  • Binder W. Polymeric ordering by H-bonds. Mimicking nature by smart building blocks. Montashefte fuer Chem. 2005;136:1–19.
  • Binder W, Zirbs R. Supramolecular polymers and networks with hydrogen bonds in the main- and side-chain. Adv Polym Sci. 2007;207:1–78. doi: 10.1007/12_2006_109
  • Huang W, Han CD. Synthesis of combined main-chain/side-chain liquid-crystalline polymers via self-assembly. Macromolecules. 2006;39:4735–4745. doi: 10.1021/ma052716q
  • Han Z, Zhang S, Shanks RA, Pavel D. Poly(4-vinylpyridine)-based hydrogen bonded side-chain liquid crystal polymers. React Funct Polym. 2008;68: 1097–1102. doi: 10.1016/j.reactfunctpolym.2008.02.014
  • Fox JD, Rowan SJ. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules. 2009;42:6823–6835. doi: 10.1021/ma901144t
  • Yang SK, Zimmerman SD. Hydrogen bonding modules for use in supramolecular polymers. Israel J Chem. 2013;53:511–520. doi: 10.1002/ijch.201300045
  • Matsunaga Y, Terada M. Liquid crystal phases exhibited by N,N′-dialkanoyldiaminomesitylenes. Mol Cryst Liq Cryst. 1986;141:321–326. doi: 10.1080/00268948608079618
  • Akutagawa T, Matusanga Y, Sakamoto S. Novel nematogens derived from N,N′-dialkanoyl-4-alkanoyloxy-1,3-benzenediamines. Mol Cryst Liq Cryst. 1994;239:141–151. doi: 10.1080/10587259408047178
  • Lee CM, Jariwala CP, Griffin AC. Heteromeric liquid-crystalline association chain polymers: structure and properties. Polymer. 1994;35:4550–4554. doi: 10.1016/0032-3861(94)90801-X
  • Alexander C, Jariwala CP, Lee CM, Griffin AC. Self-assembly of main chain liquid crystalline polymers via heteromeric hydrogen bonding. Macromol Symp. 1994;77:283–94. doi: 10.1002/masy.19940770130
  • Alexander C, Jariwala CP, Lee CM, Griffin AC. Hydrogen-bonded main chain liquid crystalline polymers. Polym Prepr. 1993;34:168–169.
  • He C, Donald AM, Griffin AC, Waigh T, Windle AH. Structure of a self-assembled hydrogen-bonded “living” main chain liquid crystalline polymer. J Polym Sci B. 1998;36:1617–1624. doi: 10.1002/(SICI)1099-0488(19980730)36:10<1617::AID-POLB3>3.0.CO;2-M
  • Lee M, Cho BK, Kang YS, Zin WC. Hydrogen-bonding-mediated formation of supramolecular rod-coil copolymers exhibiting hexagonal columnar and bicontinuous cubic liquid crystalline assemblies. Macromolecules. 1999;32:8531–8537. doi: 10.1021/ma9900333
  • Destrade C, Foucher P, Gasparaoux A, Mguyen HT, Levelut AM, Malthete J. Disc-like mesogen polymorphism. Mol Cryst Liq Cryst. 1984;106:121–146. doi: 10.1080/00268948408080183
  • Bhowmik PK, Wang X, Han H. Main chain, thermotropic, liquid crystalline, hydrogen-bonded polymers of 4,4′-bipyridyl with 4,4′-dicarboxy-α,ω -diphenoxyalkanes. Liq Cryst. 2007;34:841–854. doi: 10.1080/02678290701379616
  • Ober CK, Jin JI, Lenz RW. Liquid crystalline polymers with flexible spacers in the main chain. Adv Polym Sci. 1984;59:103–146. doi: 10.1007/3-540-12818-2_8
  • Lee CM, Griffin AC. Hydrogen bonding as the origin of both liquid crystallinity and polymer formation in some supramolecular materials. Macromol Symp. 1997;117:281–290. doi: 10.1002/masy.19971170132
  • Han H, Molla AH, Bhowmik PK. Hydrogen-bonded main-chain liquid crystalline polymers of trans-1,2-bis(4-pyridyl)ethylene with aliphatic dicarboxylic acids. Polym Prepr. 1995;36:332–333.
  • Bhowmik PK, Wang X, Han H. Hydrogen-bonded main-chain liquid crystalline polymers of 4,4′-bipyridyl with aliphatic dicarboxylic acids. Polym Prepr. 1995;36:124–125.
  • Bhowmik PK, Wang X, Han H. Main-chain, thermotropic, liquid-crystalline, hydrogen-bonded polymers of 4,4′-bipyridyl with aliphatic dicarboxylic acids. J Polym Sci A. 2003;41:1282–1295. doi: 10.1002/pola.10680
  • Han H, Roychowdhury S, Bhowmik PK. Hydrogen-bonded main-chain thermotropic liquid crystalline polymers of trans-1,2-bis(4-pyridyl)ethylene with 4-aminobenzoic acid. Polym Prepr. 1995;36:126–127.
  • Kihara H, Kato T, Uryu T, Fréchet JMJ. Induction of a cholesteric phase via self-assembly in supramolecular networks built of non-mesomorphic molecular components. Liq Cryst. 1998;24:413–418. doi: 10.1080/026782998207235
  • St Pourcain CB, Griffin AC. Thermoreversible supramolecular networks with polymeric properties. Macromolecules. 1995;28:4116–4121. doi: 10.1021/ma00116a010
  • Kato T, Kihara H, Kumar U, Fréchet JMJ. A liquid-crystalline polymer network built by molecular self-assembly through intermolecular hydrogen bonding. Angew Chem Int Ed. 1994;33:1644–1645. doi: 10.1002/anie.199416441
  • Wilson LM. A highly ordered hydrogen-bonded network. Liq Cryst. 1995;18:381–385. doi: 10.1080/02678299508036635
  • Fredrickson DD, Hilberg BA, Lasure KK, Tessner JD, Waner AE, Zenner MD, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: a study of rigid networking agents in supramolecular systems. Liq Cryst. 2012;39:1243–1251. doi: 10.1080/02678292.2012.714484
  • Jassen EL, Salazar EE, Friday SR, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: flexible bis-cinnamic acids as hydrogen bond donors in thermoreversible networks and polymers. Liq Cryst. 2012;39:857–863. doi: 10.1080/02678292.2012.684073
  • Greul JR, Witte DK, Morales CM, Weigel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding. Liq Cryst. 2010;37:1127–1131. doi: 10.1080/02678292.2010.489157
  • Hammers MD, Wichman JJ, Wiegel KN. Supramolecular main-chain liquid crystalline polymers and networks with competitive hydrogen bonding: a study of increased flexibility on distonic mesogenic hydrogen bond acceptors with networks created from tetrakis-, tris- and bis-functionalised pyridyl networking agents. Liq Cryst. 2011;38:581–587. doi: 10.1080/02678292.2011.559280
  • Deebika B, Balamurugan S, Kannan P. Liquid crystalline H-bonded polymers influenced by chiral and achiral spacers. J Polym Res. 2012;19:1–7. doi: 10.1007/s10965-012-9920-7
  • Fouquey C, Lehn JM, Levelut AM. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv Mater. 1990;2:254–257. doi: 10.1002/adma.19900020506
  • Gulik-Krzywicki T, Fouguey C, Lehn J-M. Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. Proc Natl Acad Sci USA. 1993;90:163–167. doi: 10.1073/pnas.90.1.163
  • Kotera M, Lehn J-M, Vigneron J-P. Selfassembled supramolecular rigid rods. Chem Commun. 1994:197–199. doi: 10.1039/c39940000197
  • Würthner F, Yao S, Heise B, Tschierske C. Hydrogen bond directed formation of liquid-crystalline merocyanine dye assemblies. Chem Commun. 2001:2260–2261. doi: 10.1039/b106413d
  • Sivakova S, Rowan SJ. Fluorescent supramolecular liquid crystalline polymers from nucleobase-terminated monomers. Chem Commun. 2003:2428–2429. doi: 10.1039/b307877a
  • Sivoka S, Wu J, Campo CJ, Mather PT, Rowan SJ. Liquid-crystalline supramolecular polymers formed through complementary nucleobase-pair interactions. Chem Eur J. 2006;12:446–456. doi: 10.1002/chem.200500827
  • Aoki K, Nakagawa M, Ichimura K. Self-assembly of amphoteric azopyridine carboxylic acids: organized structures and macroscopic organized morphology influenced by heat, pH change, and light. J Am Chem Soc. 2000;122:10997–11004. doi: 10.1021/ja001790f
  • Dyer DJ, Wolf JR, Li C, Landorf C, Brown B, Maas J, Conlin E, Zhao T. Surface alignment of hydrogen bonded main chain liquid crystalline polymers. Polym Prepr. 2003;44:578–579.
  • Landorf C, Wolf J, Li C, Xie W, Jacobsen J, Simpson J, Dyer DJ. Design of polar organic liquid crystalline thin films. In: Armistead J, Helfin J, Jen A, Norwood, R, editors. Organic thin films for photonic applications. Trends in optics and photonics series. Washington, DC: Optical Society of America; 2002. p. 145–152.
  • Wolf JR, Landorf C, Zhao T, Dyer DJ. Synthesis and characterisation of laterally substituted noncentrosymmetric main chain hydrogen-bonded polymers. Liq Cryst. 2014;41:721–730. doi: 10.1080/02678292.2013.878962
  • Schmidt H-W. Side chain liquid crystal polymers. Glasgow: Blackie and Son; 1989.
  • Filippov AP. Magnetooptic properties of polymeric hydrogen-bonded liquid-crystal mixtures. J Opt Technol. 2001;68:700–704. doi: 10.1364/JOT.68.000700
  • Ozwala T, Kondo M, Mamiya J, Ikeda T. Enhancement of mechanical stability in hydrogen-bonded photomobile materials with chemically modified single-walled carbon nanotubes. J Mater Chem. 2014;2:2313–2315. doi: 10.1039/c3ta14027j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.