358
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Single-photon experiments with liquid crystals for quantum science and quantum engineering applications

, , , &
Pages 111-129 | Received 30 Jun 2014, Accepted 08 Aug 2014, Published online: 26 Sep 2014

References

  • Jacobs SD, Cerqua KA, Marshal KL, Schmid AW, Guardalben MJ, Skerrett KJ. Liquid-crystal laser optics: design, fabrication, and performance. JOSA B. 1988;5:1962–1979. doi: 10.1364/JOSAB.5.001962
  • Schmid A, Papernov S, Li Z-W, Marshal K, Gunderman T, Lee J-C, Guardalben MJ, Jacobs SD. Liquid-crystal materials for high peak-power laser applications. Mol Cryst Liq Cryst. 1991;207:33–42. doi: 10.1080/10587259108032085
  • Jacobs SD, Marshal KL, Schmid A. Section 14. Liquid Crystals. In: Weber MJ, editor. Handbook of laser science and technology, supplement 2: optical materials. Boca Raton, FL: CRC Press; 1995. p. 509–577.
  • Lukishova SG, Belyaev SV, Lebedev KS, Magulariya EA, Schmid AW, Malimonenko NV. Behaviour of nonlinear liquid-crystal mirrors, made of a nonabsorbing cholesteric, in the cavity of an YAG:Nd laser operating in the cw regime and at a high pulse repetition frequency. Kvantovaya Elektronika. 1996;23:817–819.
  • Lukishova SG, Belyaev SV, Lebedev KS, Magulariya EA, Schmid AW, Malimonenko NV. Behaviour of nonlinear liquid-crystal mirrors, made of a nonabsorbing cholesteric, in the cavity of an Nd: YAG laser operating in the cw regime and at a high pulse repetition frequency. Quantum Electron. 1996;26:796–798. doi: 10.1070/QE1996v026n09ABEH000784
  • Lukishova SG. Nonlinear optical response of cyanobiphenyl liquid crystals to high-power, nanosecond laser radiation. J Nonlinear Opt Phys Mater. 2000;9(3):365–411. doi: 10.1142/S0218863500000212
  • Khoo I-C. Liquid crystals, physical properties and nonlinear optical phenomena. New York: John Wiley & Sons; 1995.
  • Khoo I-C, Wu S-T. Optics and nonlinear optics of liquid crystals. Singapore: World Scientific; 1993.
  • Il'chishin I, Tikhonov E, Tishchenko V, Shpak M. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 1978;32:24–27.
  • Kopp VI, Fan B, Vithana HKM, Genack AZ. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998;23:1707–1709. doi: 10.1364/OL.23.001707
  • Palffy-Muhoray P, Cao W, Moreira M, Taheri B, Munoz A. Photonics and lasing in liquid crystal materials. Philos Trans A Math Phys Eng Sci. 2006;364:2747–2761. doi: 10.1098/rsta.2006.1851
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685. doi: 10.1038/nphoton.2010.184
  • Blinov LM, Bartolino R, editors. Liquid crystal microlasers. Trivandrum: Transworld Research Network; 2010.
  • Chilaya G, Chanishvili A, Petriashvili G, Barberi R, De Santo MP, Matranga MA. Different approaches of employing cholesteric liquid crystals in dye lasers. Scient Res Mater Sci and Appl. 2011;2:116–129.
  • Dolgaleva K, Wei SKH, Lukishova SG, Chen, S-H, Schwertz K, Boyd RW. Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. JOSA B. 2008;25:1496–1504. doi: 10.1364/JOSAB.25.001496
  • Shibaev PV, Kopp VI, Genack AZ, Hanelt E. Lasing from chiral photonic band gap materials based on cholesteric glasses. Liq Cryst. 2003;30:1391–1400. doi: 10.1080/02678290310001621921
  • Wei SKH, Chen SH, Dolgaleva K, Lukishova SG, Boyd RW. Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Appl Phys Lett. 2009;94:Article no. 041111.
  • Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett. 2006;96:Article no. 163905.
  • Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl Phys Lett. 2006;88:Article no. 221102.
  • Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L, Santamato E. Tunable liquid crystal q-plates with arbitrary topological charge. Opt Express. 2011;19(2):4085– 4090.
  • Anoop KK, Rubano A, Fittipaldi R, Wang X, Paparo D, Vecchione A, Marrucci L, Bruzzese R, Amoruso S. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate. Appl Phys Lett. 2014;104:Article no. 241604.
  • Rumala YS, Milione G, Nguyen TA, Pratavieira S, Hossain Z, Nolan D, Slussarenko S, Karimi E, Marrucci L, Alfano RR. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt Lett. 2013;38:5083–5086. doi: 10.1364/OL.38.005083
  • D'Ambrosio V, Spagnolo N, Del Re L, Slussarenko S, Li Y, Kwek LC, Marrucci L, Walborn SP, Aolita L, Sciarrino F. Photonic polarization gears for ultra-sensitive angular measurements. Nat Comm. 2013;4:Article no. 2432.
  • Marrucci L. The q-plate and its future. J Nanophoton. 2013;7:Article no. 078598.
  • Wilkinson TD, Rajesekharan R. Chapter 17. Liquid crystals for nanophotonics. In: Li Q, editor. Liquid crystals beyond displays: chemistry, physics, and applications. Hoboken, NJ: John Wiley & Sons; 2012. p. 525–567.
  • Diaz A, Khoo I-C. Chapter 3.08. Liquid crystalline nano-structured optical metamaterials. In: Andrews D, Scholes G, Wiederrecht G, editors. Comprehensive nanoscience and technology, vol. 3. London: Elsevier; 2011. p. 225–261.
  • Si G, Zhao Y, Leong ESP, Liu YJ. Liquid-crystal-enabled active plasmonics: a review. Materials. 2014;7:1296–1317. doi: 10.3390/ma7021296
  • Lukishova SG, Schmid AW, McNamara AJ, Boyd RW, Stroud CR. Room temperature single-photon source: single-dye molecule fluorescencein liquid crystal host. IEEE J Sel Top Quantum Electron. 2003;9(6):1512–1518. doi: 10.1109/JSTQE.2003.820944
  • Lukishova SG, Bissell LJ, Winkler J, Stroud CR. Resonance in quantum dot fluorescence in a photonic bandgap liquidcrystal host. Opt Lett. 2012;37(7):1259–1261. doi: 10.1364/OL.37.001259
  • Lukishova SG, Schmid AW, Supranowitz CM, Lippa N, McNamara AJ, Boyd RW, Stroud CR. Dye-doped cholesteric-liquid-crystal room-temperature single-photon source. J Mod Opt. 2004;51(9–10):1535–1547. doi: 10.1080/09500340408235291
  • Lukishova SG, Schmid AW, Knox RP, Freivald P, McNamara A, Boyd RW, Stroud CR, Marshall KL. Single-photon source for quantum information based on single dyemolecule fluorescence in liquid crystal host. Mol Cryst Liq Cryst. 2006;454:403–416.
  • Lukishova SG, Bissell LJ, Menon VM, Valappil N, Hahn MA, Evans CM, Zimmerman B, Krauss TD, Stroud CR, Boyd RW. Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources. J Mod Opt. 2009;56(2 & 3):167–174. doi: 10.1080/09500340802410106
  • Lukishova SG, Bissell LJ, Stroud CR, Boyd RW. Room temperature single photon sources with definite circular and linear polarizations. Opt Spectrosc. 2010;108(3): 417–424. doi: 10.1134/S0030400X10030161
  • Lukishova SG, Schmid AW, Knox R, Freivald P, Bissell L, Boyd RW, Stroud CR, Marshall KL. Room temperature source of single photons of definite polarization. J Mod Opt. 2007;54(2 & 3):417–429. doi: 10.1080/09500340600845172
  • Lukishova SG, Schmid AW. Near-field optical microscopy of defects in cholesteric oligomeric liquid crystal films. Mol Cryst Liq Cryst. 2006;454:15–21.
  • Lukishova SG. Liquid crystals under two extremes: (1) high-power laser irradiation, and (2) single-photon level. Mol Cryst Liq Cryst. 2012;559:127–157. doi: 10.1080/15421406.2012.658703
  • Lukishova SG, Winkler JM, Bissell LJ. Quantum dot fluorescence in photonic bandgap glassy cholesteric liquid crystal structures: microcavity resonance under CW-excitation, antibunching and decay time. Mol Cryst Liq Cryst. 2014; 595(1):98–105. doi:10.1080/15421406.2014.917795.
  • Lukishova SG, Boyd RW. Efficient room-temperature source of polarized single photons. Stroud. US Patent 7,253,871. 2007 Aug 7.
  • Bissell LJ. Experimental realization of efficient, room-temperature single-photon sources with definite circular and linear polarizations [dissertation]. Rochester, NY: University of Rochester; 2011.
  • Gehring GM, Liapis AC, Boyd RW. Tunneling delays in frustrated total internal reflection. Phys Rev A. 2012;85(3):Article no. 032122.
  • Gehring GM, Liapis AC, Lukishova SG, Boyd RW. Time-domain measurements of reflection delay in frustrated total internal reflection. Phys Rev Lett. 2013;111(3): Article no. 030404.
  • Liapis AC, Gehring GM, Lukishova SG, Boyd RW. Simulating quantum-mechanical barrier tunneling phenomena with a nematic-liquid-crystal-filled double-prism structure. Mol Cryst Liq Cryst. 2014;592(1):136–143. doi:10.1080/15421406.2014.918084.
  • Nagali E, Sansoni L, Sciarrino, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat Photonics. 2009;3:720–723. doi: 10.1038/nphoton.2009.214
  • Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Phys Rev Lett. 2009;103:Article no. 013601.
  • Gisin N, Thew R. Quantum communication. Nat Photonics. 2007;1:165–171. doi: 10.1038/nphoton.2007.22
  • Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: single-photon sources and detectors. Rev Sci Instrum. 2011;82:071101-1–25.
  • Yamamoto Y, Santori C, Solomon G, Vuckovic J, Fattal D, Waks E, Diamanti E. Single photons for quantum information systems. Prog Inform. 2005;1(1):5–37. doi: 10.2201/NiiPi.2005.1.2
  • Buckley S, Kelley Rivoire K, Vuckovic J. Engineered quantum dot single-photon sources. Rep Prog Phys. 2012;75:126503-1–27.
  • Lounis B, Orrit M. Single-photon sources. Rep Prog Phys. 2005;68:1129–1179. doi: 10.1088/0034-4885/68/5/R04
  • De Vittorio M, Pisanello F, Martiradonna L, Qualtieri A, Stomeo T, Bramati A, Cingolani R. Recent advances on single photon sources based on single colloidalnanocrystals. Opto-Electron Rev (Springer). 2010;18(1):1–9. doi: 10.2478/s11772-009-0026-7
  • Santori C, Fattal D, Yamamoto Y. Single-photon devices and applications. Weinheim: Wiley; 2010.
  • Lukishova SG. Single photon sources for secure quan- tum communication. Proc SPIE. 2013;9065:90650C. doi:10.1117/12.2053173.
  • Kimble HJ, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence. Phys Rev Lett. 1977;39:691–695. doi: 10.1103/PhysRevLett.39.691
  • Yamamoto Y. Quantum optics and measurements, AP387. Stanford University; 2011 [cited 2014 Sep 1]. Available from: http://web.stanford.edu/ rsasaki/AP387/AP387.html.
  • Mandel L, Wolf E. Optical coherence and quantum optics. New York, NY: Cambridge University Press; 1995.
  • Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems, and signal processing. Bangalore, India; 1984. p. 175–179 [cited 2014 Sep 9]. Available from: http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf.
  • Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys. 2002;74:145–195. doi: 10.1103/RevModPhys.74.145
  • Choi C. MIT technology review; 2013. [cited 2014 Sep 5]. Available from: http://www.technologyreview.com/news/514846/google-and-nasa-launch-quantum-computing-ai-lab/
  • Ronnow TF, Wang Z, Job J, Boixo S, Isakov SV, Wecker D, Martinis JM, Lidar DA, Troyer M. Defining and detecting quantum speedup. Science. 2014;345:420–424. doi: 10.1126/science.1252319
  • Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature. 2001;409:46–52. doi: 10.1038/35051009
  • Novotny L, Hecht B. Principles of nano-optics. Cambridge, NY: Cambridge University Press; 2012.
  • Purcell EM. Spontaneous emission at radio frequencies. Phys Rev. 1946;69:681. doi: 10.1103/PhysRev.69.37
  • Lukishova SG, Winkler JL, Bissell LJ, Mihaylova D, Liapis A, Shi Z, Goldberg D, Menon VM, Boyd R, Chen G, Prasad N. Room-temperature single photon sources based on nanocrystals in photonic/plasmonic nanostructures. Proceeding of SPIE 9254 [cited 2014 Sep 11]. Available from: http://spie.org/Publications/Proceedings/Paper/10.1117/12.2066979
  • Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett. 1987;59:2044–2046. doi: 10.1103/PhysRevLett.59.2044
  • Klyshko DN. Photons and nonlinear optics. New York: Gordon and Breach; 1988.
  • Shih YH, Alley CO. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett. 1988;61:2921–2924. doi: 10.1103/PhysRevLett.61.2921
  • Ghosh R, Mandel L. Observation of nonclassical effects in the interference of two photons. Phys Rev Lett. 1987;59:1903–1905. doi: 10.1103/PhysRevLett.59.1903
  • Kwiat P, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih YH. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett. 1995;75(24):4337–4341. doi: 10.1103/PhysRevLett.75.4337
  • Kwiat PG, Waks E, White AG, Appelbaum I, Eberhard PH. Ultrabright source of polarization-entangled photons. Phys Rev A. 1999;60:R773–R776.
  • Winful HG, Zhang C. Tunneling delay time in frustrated total internal reflection. Phys Rev A. 2009;79(2):Article no. 023826.
  • Papoular DJ, Clade P, Polyakov SV, Migdall A, Lett PD, Phillips WD. Measuring optical tunneling times using a Hong-Ou-Mandel interferometer. Opt Express. 2008;16:16005–16012. doi: 10.1364/OE.16.016005
  • Wigner EP. Lower limit for the energy derivative of the scattering phase shift. Phys Rev. 1955;98(1):145–147. doi: 10.1103/PhysRev.98.145
  • Winful HG. Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox. Phys Rep. 2006;436:1–69. doi: 10.1016/j.physrep.2006.09.002
  • Pieranski P. Classroom experiments with chiral liquid crystals. In: Kitzerow H-S, Bahr C, editors. Chirality in liquid crystals. New York: Springer; 2001. p. 28–66.
  • Bunning TJ, Kreuzer F-H. Cyclosiloxane-based liquid crystalline materials. Trends Polym Sci. 1995;3:318–323.
  • Goos F, Hänchen H. Ein neuer und fundamentaler versuch zur totalreflexion. Ann Phys. 1947;436(7–8):333–346. doi: 10.1002/andp.19474360704
  • Merano M, Aiello A, Hooft GW, van Exter MP, Eliel ER, Woerdman JP. Observation of Goos-Hänchen shifts in metallic reflection. Opt Express. 2007;15:15928– 15934.
  • Geary JM, Goodby JW, Kmetz AR, Patel JS. The mechanism of polymer alignment of liquid-crystal materials. J Appl Phys. 1987;62(10):4100–4108. doi: 10.1063/1.339124
  • Berreman DW. Optics in stratified and anisotropic media: 4×4-matrix formulation. J Opt Soc Am. 1972;62(1): 502–510. doi: 10.1364/JOSA.62.000502
  • Wu S-T, Efron U, Hess LD. Birefringence measurements of liquid crystals. Appl Opt. 1984;23:3911–3915. doi: 10.1364/AO.23.003911
  • Steinberg AM, Kwiat PG, Chiao RY. Measurement of the single-photon tunneling time. Phys Rev Lett. 1993;71:708–711. doi: 10.1103/PhysRevLett.71.708
  • Lukishova SG, Pashinin PP, Batygov SK, Arkhangelskaya VA, Poletimov AE, Scheulin AS, Terentiev BM. High-power laser-beam shaping using apodized apertures. Laser Part Beams. 1990;8(1–2):349–360. doi: 10.1017/S0263034600008107
  • Jian AQ, Zhang XM. Resonant optical tunneling effect: recent progress in modeling and applications. IEEE J Sel Top Quantum Electron. 2013;19(3): Article no. 9000310.
  • Sun DG. A proposal for digital electro-optic switches with free-carrier dispersion effect and Goos-Hanchen shift in silicon-on-insulator waveguide corner mirror. J Appl Phys. 2013;114:Article no. 104502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.