480
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Cholesteric solid spherical microparticles: chiral optomechanics and microphotonics

, , , , &
Pages 59-79 | Received 24 Feb 2016, Accepted 19 May 2016, Published online: 21 Jul 2016

References

  • Kim Y, Yeom B, Arteaga O, et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro-to the nanoscale. Nat Mater. 2016. doi:10.1038/nmat4525.
  • Zhang S, Park YS, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009;102:0239011–0239014.
  • Pendry JB. A chiral route to negative refraction. Science. 2004;306(5700):1353–1355. doi: 10.1126/science.1104467
  • Tang Y, Cohen AE. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science. 2011;332(6027):333–336. doi: 10.1126/science.1202817
  • Kitzerow HS, Bahr C. Chirality in liquid crystals. New York: Springer-Verlag; 2001.
  • Zapotocky M, Ramos L, Poulin P, Lubensky TC, Weitz DA. Particle-stabilized defect gel in cholesteric liquid crystals. Science. 1999;283(5399):209–212. doi: 10.1126/science.283.5399.209
  • Tkalec U, Ravnik M, Copar S, Žumer S, Muševič I. Reconfigurable knots and links in chiral nematic colloids. Science. 2011;333:62–65. doi: 10.1126/science.1205705
  • Ravnik M, Alexander GP, Yeomans JM, Žumer S. Mesoscopic modelling of colloids in chiral nematics. Faraday Discuss. 2010;144:159–169. doi: 10.1039/B908676E
  • Fukuda JI, Žumer S. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat Commun. 2011;2:246. doi:10.1038/ncomms1250.
  • Ackerman PJ, van de Lagemaat J, Smalyukh II. Self-assembly and electrostriction of matrixs and chains of hopfion particles in chiral liquid crystals. Nat Commun. 2015;6. doi:10.1038/ncomms.
  • Porenta T, Čopar S, Ackerman PJ, et al. Topological switching and orbiting dynamics of colloidal spheres dressed with chiral nematic solitons. Sci Rep. 2014;4. doi:10.1038/srep07337.
  • Smalyukh II, Lansac Y, Clark N, Trivedi R. Three-dimensional structure and multistable optical switching of triple twist toron quasiparticles in anisotropic fluids. Nat Mater. 2010;9:139–145. doi: 10.1038/nmat2592
  • D’Adamo G, Marenduzzo D, Micheletti C, Orlandini E. Electric field controlled columnar and planar patterning of cholesteric colloids. Phys Rew Lett. 2015;114(17):177801(1–5).
  • Wang L, Li Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications. Adv Funct Mater. 2016;26(1):10–28. doi: 10.1002/adfm.201502071
  • Wang Y, Li Q. Light-Driven chiral molecular switches or motors in liquid crystals. Adv Mater. 2012;24(15):1926–1945. doi: 10.1002/adma.201200241
  • Stumpel JE, Broer DJ, Schenning APHJ. Water-responsive dual-coloured photonic polymer coatings based on cholesteric liquid crystals. RSC Adv. 2015;5(115):94650–94653. doi: 10.1039/C5RA18017A
  • Ilchishin IP, Tikhonov EA, Tishchenko VG, Shpak MT. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 1980;32(1):24–27.
  • Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4(10):676–685. doi: 10.1038/nphoton.2010.184
  • Muñoz A, McConney ME, Kosa T, et al. 3D microlasers from selfassembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18:26995–27003. doi: 10.1364/OE.18.001600
  • Lee KM, Tondiglia VP, White TJ. Photosensitivity of reflection notch tuning and broadening in polymer stabilized cholesteric liquid crystals. Soft Matter. 2016;12:1256–1261. doi: 10.1039/C5SM01985K
  • Aßhoff SJ, Sukas S, Yamaguchi T, Hommersom CA, Le Gac S, Katsonis N. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light. Sci Rep. 2015;5. doi:10.1038/srep14183.
  • Hwang J, Song MH, Park B, et al. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nat Mater. 2005;4:383–387. doi: 10.1038/nmat1377
  • Kopp VI, Fan B, Vithana HKM, Genack AZ. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett. 1998;23(21):1707–1709. doi: 10.1364/OL.23.001707
  • Ilchishin IP, Tikhonov EA. Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models. Prog Quant Electron. 2015;41:1–22. doi: 10.1016/j.pquantelec.2015.02.001
  • Palffy-Muhoray P, Cao W, Moreira M, Taheri B, Munoz A. Photonics and lasing in liquid crystal materials. Phil Trans R Soc London A: Math Phys Eng Sci. 2006;364(1847):2747–2761. doi: 10.1098/rsta.2006.1851
  • Humar M, Ravnik M, Pajk S, Muševič I. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;3(10):595–600. doi: 10.1038/nphoton.2009.170
  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11(5):288–290. doi: 10.1364/OL.11.000288
  • Dholakia K, Cizmar T. Shaping the future of manipulation. Nat Photonics. 2011;5(6):335–342. doi: 10.1038/nphoton.2011.80
  • Padgett M, Bowman R. Tweezers with a twist. Nat Photonics. 2011;5(6):343–348. doi: 10.1038/nphoton.2011.81
  • Jonas A, Zemanek P. The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis. 2008;29(24):4813–4851. doi: 10.1002/elps.200800484
  • Padgett M, Di Leonardo R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip. 2011;11(7):1196–1205. doi: 10.1039/c0lc00526f
  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–373. doi: 10.1038/nature05058
  • Blow N. Microfluidics: the great divide. Nat Methods. 2009;6:683–686. doi: 10.1038/nmeth0909-683
  • Gerstner E. Microfluidics: solutions for assembly. Nat Phys. 2011;7(2):98–98. doi: 10.1038/nphys1927
  • Monat C, Domachuk P, Eggleton BJ. Integrated optofluidics: a new river of light. Nat Photonics. 2007;1(2):106–114. doi: 10.1038/nphoton.2006.96
  • Psaltis D, Quake SR, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442(7101):381–386. doi: 10.1038/nature05060
  • Chen Y, Lei L, Zhang K, et al. Optofluidicmicrocavities: Dye-lasers and biosensors. Biomicrofluidics. 2010;4(4):043002(1–14). doi: 10.1063/1.3499949
  • François A, Himmelhaus M. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl Phys Lett. 2008;92(14):141107(1–3). doi: 10.1063/1.2907491
  • Arnold S, Ramjit R, Keng D, Kolchenko V, Teraoka I. Microparticlephotophysics illuminates viral bio-sensing. Faraday Discuss. 2008;137:65–83. doi: 10.1039/B702920A
  • Zhou K, Tong L, Deng J, Yang W. Hollow polymeric microspheres grafted with optically active helical polymer chains: preparation and their chiral recognition ability. J Mater Chem. 2010;20:781–789. doi: 10.1039/B918132F
  • Soria S, Berneschi S, Bronci M, et al. Optical microspherical resonators for biomedicalsensing. Sensors. 2011;11:785–805. doi: 10.3390/s110100785
  • Lin I-H, Miller DS, Bertics PJ, Murphy CJ, de Pablo JJ, Abbot NL. Endotoxininduced-structural transformations in liquid crystalline droplets. Science. 2011;332:1297–1300. doi: 10.1126/science.1195639
  • Pileni MP. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater. 2003;2(3):145–150. doi: 10.1038/nmat817
  • Romano F, Sciortino F. Colloidal self-assembly: patchy from the bottom up. Nat Mater. 2011;10(3):171–173. doi: 10.1038/nmat2975
  • Chen Q, Bae SC, Granick S. Directed self-assembly of a colloidal kagome lattice. Nature. 2011;469(7330):381–384. doi: 10.1038/nature09713
  • Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater. 2007;6(8):557–562. doi: 10.1038/nmat1949
  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–2421. doi: 10.1126/science.1070821
  • Muševič I. Nematic colloids, topology and photonics. Phil Trans R Soc London A: Math Phys Eng Sci. 2013;371(1988):20120266–20120266. doi: 10.1098/rsta.2012.0266
  • Lu PJ, Weitz DA. Colloidal particles: crystals, glasses, and gels. Annu Rev Condens Matter Phys. 2013;4:217–233. doi: 10.1146/annurev-conmatphys-030212-184213
  • Vennes M, Zentel R, Rössle M, Stepputat M, Kolb U. Smectic liquid-crystalline colloids by miniemulsion techniques. Adv Mater. 2005;17(17):2123–2127. doi: 10.1002/adma.200500310
  • De Gennes PG. Soft matter. Rev Mod Phys. 1992;64(3):645–648. doi: 10.1103/RevModPhys.64.645
  • Walther A, Muller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013;113(7):5194–5261. doi: 10.1021/cr300089t
  • Pang X, Wan C, Wang M, Lin Z. Strictly biphasic soft and hard Janus structures: synthesis, properties, and applications. Angew Chem Int Ed. 2014;53(22):5524–5538. doi: 10.1002/anie.201309352
  • Lattuada M, Hatton TA. Synthesis, properties and applications of Janus nanoparticles. Nano Today. 2011;6(3):286–308. doi: 10.1016/j.nantod.2011.04.008
  • Honegger T, Lecarme O, Berton K, Peyrade D. 4-D dielectrophoretic handling of Janus particles in a mic- rofluidic chip. Microelectron Eng. 2010;87(5):756–759. doi: 10.1016/j.mee.2009.11.145
  • Crawford GP, Zumer S. Liquid crystals in complex geometries. London: Taylor and Francis; 1996.
  • Lavrentovich OD. Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops. Liq Cryst. 1998;24(1):117–126. doi: 10.1080/026782998207640
  • Xu F, Crooker PP. Chiral nematic droplets with parallel surface anchoring. Phys Rev E. 1997;56(6):6853–6860. doi: 10.1103/PhysRevE.56.6853
  • Fukuda J, Zumer S. Novel defect structures in a strongly confined liquid-crystalline blue phase. Phys Rev Lett. 2010;104(1):017801(1–5). doi: 10.1103/PhysRevLett.104.017801
  • Bouligand Y, Livolant F. The organization of cholesteric spherulites. J Phys. 1984;45(12):1899–1923. doi: 10.1051/jphys:0198400450120189900
  • Seč D, Porenta T, Ravnik M, Žumer S. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. 2012;8(48):11982–11988. doi: 10.1039/c2sm27048j
  • Seč D, Čopar S, Žumer S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nature Commun. 2014;5:3057(1–7). doi: 10.1038/ncomms4057
  • Orlova T, Aßhoff SJ, Yamaguchi T, Katsonis N, Brasselet E. Creation and manipulation of topological states in chiral nematic microspheres. Nat Commun. 2015;6:7603(1–9). doi:10.1038/ncomms8603.
  • Chen L, Li Y, Fan J, Bisoyi HK, Weitz DA, Li Q. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv Opt Mater. 2014;2(9):845–848. doi: 10.1002/adom.201400166
  • Tkachenko G, Brasselet E. Spin controlled optical radiation pressure. Phys Rev Lett. 2013;111(3):033605(1–5). doi: 10.1103/PhysRevLett.111.033605
  • Tkachenko G, Brasselet E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat Commun. 2014;5:4491(1–8). doi:10.1038/ncomms5491.
  • Hernández RJ, Mazzulla A, Pane A, Volke-Sepúlveda K, Cipparrone G. Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. Lab Chip. 2013;13(3):459–467. doi: 10.1039/C2LC40703E
  • Donato MG, Hernandez J, Mazzulla A, et al. Polarization-dependent optomechanics mediated by chiral microresonators. Nat Commun. 2014;5:3656. doi:10.1038/ncomms4656. doi: 10.1038/ncomms4656
  • Tkachenko G, Brasselet E. Optofluidic chiral sorting of material chirality by chiral light. Nat Commun. 2014;5:3577(1–7).
  • Fernández-Nieves A, Cristobal G, Garcés-Chávez V, Spalding GC, Dholakia K, Weitz DA. Optically anisotropic colloids of controllable shape. Adv Mater. 2005;17(6):680–684. doi: 10.1002/adma.200401462
  • Provenzano C, Mazzulla A, Pagliusi P, et al. Self-organized internal architectures of chiral micro-particles. APL Mater. 2014;2(2):022103(1–7). doi: 10.1063/1.4863837
  • Bezić J, Žumer S. Structures of the cholesteric liquid crystal droplets with parallel surface anchoring. Liq Cryst. 1992;11:593–619. doi: 10.1080/02678299208029013
  • Cipparrone G, Mazzulla A, Pane A, Hernandez RJ, Bartolino R. Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device. Adv Mater. 2011;23:5773–5778. doi: 10.1002/adma.201102828
  • Rosenthal M, Portale G, Burghammer M, Bar G, Samulski ET, Ivanov DA. Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules. 2012;45(18):7454–7460. doi: 10.1021/ma301446t
  • Maxwell JC. Treatise on electricity and magnetism. 3rd ed. New York: Dover; 1954.
  • Lebedev P. Experimental examination of light pressure. Ann der Physik. 1901;6:433–458. doi: 10.1002/andp.19013111102
  • Nichols EF, Hull GF. A preliminary communication on the pressure of heat and light radiation. Phys Rev (Series I). 1901;13(5):307–320. doi: 10.1103/PhysRevSeriesI.13.307
  • Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24(4):156–159. doi: 10.1103/PhysRevLett.24.156
  • Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature. 1998;394:348–350. doi: 10.1038/28566
  • Chu S. The manipulation of neutral particles. Rev Mod Phys. 1998;70(3):685–706. doi: 10.1103/RevModPhys.70.685
  • Grier DG. A revolution in optical manipulation. Nature. 2003;424(6950):810–816. doi: 10.1038/nature01935
  • Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat Commun. 2013;4:2374. doi:10.1038/ncomms3374.
  • Beth R. Mechanical detection and measurement of the angular momentum of light. Phys Rev. 1936;50:115–125. doi: 10.1103/PhysRev.50.115
  • Fazal FM, Block SM. Optical tweezers study life under tension. Nature Photon. 2011;5:318–321. doi: 10.1038/nphoton.2011.100
  • Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. Optical trapping and manipulation of nanostructures. Nat Nanotechnol. 2013;8:807–819. doi: 10.1038/nnano.2013.208
  • Juodkazis S, Matsuo S, Murazawa N, Hasegawa I, Misawa H. High-efficiency optical transfer of torque to a nematic liquid crystal droplet. Appl Phys Lett. 2003;82:4657–4659. doi: 10.1063/1.1588366
  • Gleeson HF, Wood TA, Dickinson M. Laser manipulation in liquid crystals: an approach to microfluidics and micromachines. Phil Trans R Soc A: Math Phys Eng Sci. 2006;364:2789–2805. doi: 10.1098/rsta.2006.1855
  • Trivedi RP, Engström D, Smalyukh I. Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids. J Opt. 2011;13(4):044001(1–19). doi: 10.1088/2040-8978/13/4/044001
  • Yang Y, Brimicombe PD, Roberts NW, Dickinson MR, Osipov M, Gleeson HF. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt Express. 2008;16:6877–6882. doi: 10.1364/OE.16.006877
  • Mosallaeipour M, Hatwalne Y, Madhusudana NV, Ananthamurthy S. Laser induced rotation of trapped chiral and achiral nematic droplets. J Mod Opt. 2010;57:395–399. doi: 10.1080/09500341003672064
  • Bishop AI, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett. 2004;92(19):198104(1–4). doi: 10.1103/PhysRevLett.92.198104
  • Bennett JS, Gibson LJ, Kelly RM, et al. Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci Rep. 2013;3:1759(1–5). doi:10.1038/srep01759.
  • Leach J, Mushfique H, di Leonardo R, Padget M, Cooper J. An optically driven pump for microfluidics. Lab Chip. 2006;6:735–739. doi: 10.1039/b601886f
  • Di Leonardo R, Búzás A, Kelemen L, Vizsnyiczai G, Oroszi L, Ormos P. Hydrodynamic synchronization of light driven microrotors. Phys Rev Lett. 2012;109;034104(1–5). doi: 10.1103/PhysRevLett.109.034104
  • Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photon Rev. 2013;7(6):839–854. doi: 10.1002/lpor.201200058
  • Aleksanyan A, Brasselet E. Spin–orbit photonic interaction engineering of Bessel beams. Optica. 2016;3(2):167–174. doi: 10.1364/OPTICA.3.000167
  • Sanders JL, Yang Y, Dickinson MR, Gleeson HF. Pushing, pulling and twisting liquid crystal systems: exploring new directions with laser manipulation. Phil Trans R Soc London A: Math Phys Eng Sci. 2013;371(1988):20120265–20120265. doi: 10.1098/rsta.2012.0265
  • Murazawa N, Juodkazis S, Matsuo S. Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezer. Small. 2005;1:656–661. doi: 10.1002/smll.200500038
  • Usman A, Takayuki U, Hiroshi M. Optical reorientation and trapping of nematic liquid crystals leading to the formation of micrometer-sized domain. J Phys Chem C. 2011;115(24):11906–11913. doi: 10.1021/jp200721f
  • Brasselet E, Murazawa N, Juodkazis S, Misawa H. Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers. Phys Rev E. 2008;77(4):041704(1–7). doi: 10.1103/PhysRevE.77.041704
  • Galajda P, Ormos P. Complex micromachines produced and driven by light. Appl Phys Lett. 2001;78:249–251. doi: 10.1063/1.1339258
  • Jones PH, Palmisano F, Bonaccorso F, et al. Rotation detection in light-driven nanorotors. ACS Nano. 2009;3:3077–3084. doi: 10.1021/nn900818n
  • Bishop AI, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys Rev A. 2003;68:033802(1–8). doi: 10.1103/PhysRevA.68.033802
  • La Porta A, Wang MD. Optical Torque wrench: angular trapping, rotation and torque detection of quartz microparticles. Phys Rev Lett. 2004;92(19):190801(1–4). doi: 10.1103/PhysRevLett.92.190801
  • Neale SL, MacDonald MP, Dholakia K, Krauss TF. All-optical control of microfluidic components using form birefringence. Nat Mater. 2005;4:530–533. doi: 10.1038/nmat1411
  • Garces-Chavez V, McGloin D, Padgett MJ, Dultz W, Schmitzer H, Dholakia K. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys Rev Lett. 2003;91:093602(1–4). doi: 10.1103/PhysRevLett.91.093602
  • He H, Friese ME, Heckenberg NR, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett. 1995;75:826–829. doi: 10.1103/PhysRevLett.75.826
  • Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett. 1997;22:52–54. doi: 10.1364/OL.22.000052
  • Hernández RJ, Mazzulla A, Provenzano C, Pagliusi P, Cipparrone G. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci Rep. 2015;5:16926(1–11). doi: 10.1038/srep16926
  • De Gennes PG, Prost J. The physics of liquid crystals. Oxford: Oxford Science; 1995.
  • Blinov LM. Structure and properties of liquid crystals. New York: Springer; 2011.
  • Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J. 1992;61:569–582. doi: 10.1016/S0006-3495(92)81860-X
  • Born M, Wolf E. Principles of optics. 7th ed. Cambridge: Cambridge University Press; 1999.
  • Mansuripur M, Zakharian AR, Wright, EM. Spin and angular momenta of light reflected from a cone. Phys Rev A. 2011;84:033813(1–12).
  • Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical measurement of microscopic torques. J Mod Opt. 2001;48:405–413. doi: 10.1080/09500340108230922
  • Nieminen TA, Asavei T, Loke VLY, Heckenberg NR, Rubinsztein-Dunlop H. Symmetry and the generation and measurement of optical torque. J Quant Spectrosc Radiat Transf. 2009;110:1472–1482. doi: 10.1016/j.jqsrt.2009.03.013
  • Murazawa N, Juodkazisa S, Misawa H. Laser manipulation of a smectic liquid-crystal droplet Eur. Phys J E. 2006;20:435–439.
  • Bliokh KY, Nori F. Transverse and longitudinal angular momenta of light. Phys Rep. 2015;592:1–38. doi: 10.1016/j.physrep.2015.06.003
  • Vahala KJ. Optical microcavities. Nature. 2003;424(6950):839–846. doi: 10.1038/nature01939
  • Vahala K, editor. Optical microcavities. Vol. 5. Singapore: World Scientific; 2004.
  • Xiao YF, Qihuang G. Optical microcavity: from fundamental physics to functional photonics devices. Sci Bull. 2016;61(3):185–186. doi: 10.1007/s11434-016-0996-z
  • Yong-Chun L, Yu-Wen H, Wei WC, Yun-Feng X. Review of cavity optomechanical cooling. Chinese Phys B. 2013;22(11):114213(1–32).
  • Cao H, Wiersig J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev Mod Phys. 2015;87(1):61–111. doi: 10.1103/RevModPhys.87.61
  • Shao L, Jiang XF, Yu XC, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater. 2013;25(39):5616–5620. doi: 10.1002/adma201302572
  • Heebner J, et al. Optical microresonators: theory, fabrication, and applications. London: Springer Science & Business Media; 2008.
  • Painter O, Lee RK, Scherer A, et al. Two-dimensional photonic band-gap defect mode laser. Science. 1999;284:1819–1821. doi: 10.1126/science.284.5421.1819
  • Jewell JL, McCall SL, Lee YH, Scherer A, Gossard AC, English JH. Lasing characteristics of GaAs microresonators. Appl Phys Lett. 1989;54:1400–1402. doi: 10.1063/1.100679
  • Treussart F, Dubreuil N, Knight JC, et al. Microlasers based on silica microspheres. Ann Telecommun. 1997;52:557–568.
  • Cao W, Munoz A, Palffy-Muhoray P, Taheri B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater. 2002;1:111–113. doi: 10.1038/nmat727
  • Noginov MA, Zhu G, Belgrave AM, et al. Demonstration of a spaser-based nanolaser. Nature. 2009;460:1110–1112. doi: 10.1038/nature08318
  • Hill MT, Oei Y-S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nat Photonics. 2007;1:589–594. doi: 10.1038/nphoton.2007.171
  • Foreman MR, Swaim JD, Vollmer F. Whispering gallery mode sensors. Adv Opt Photonics. 2015;7(2):168–240. doi: 10.1364/AOP.7.000168
  • Lin JT, Xu YX, Fang ZW, et al. Second harmonic generation in a high-Q lithium niobate micro-resonator fabricated by femtosecond laser micromachining. Sci China Phys Mech Astronomy. 2015;58(11):114209(1–5).
  • Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Method. 2008;5:591–596. doi: 10.1038/nmeth.1221
  • Zhou ZH, Shu FJ, Shen Z, et al. High-Q whispering gallery modes in a polymer microresonator with broad strain tuning. Sci China Phys Mech Astronomy. 2015;58(11):114208(1–5). doi: 10.1007/s11433-015-5725-0
  • Gan L, Li ZY. Photonic crystal cavities and integrated optical devices. Sci China Phys Mech Astronomy. 2015;58(11):114203(1–12). doi: 10.1007/s11433-015-5724-1
  • Kippenberg TJ, Holzwarth R, Diddams SA. Microresonator-based optical frequency combs. Science. 2011;332(6029):555–559. doi: 10.1126/science.1193968
  • Xu Y, Liang W, Yariv A, Fleming JG, Lin SY. Modal analysis of Bragg onion resonators. Opt Lett. 2004;29:424–426. doi: 10.1364/OL.29.000424
  • Xu Y, Liang W, Yariv A, Fleming JG, Lin SY. High-quality-factor Bragg onion resonators with omnidirectional reflector cladding. Opt Lett. 2003;28(22):2144–2146. doi: 10.1364/OL.28.002144
  • Liang W, Xu Y, Huang Y, Yariv A, Fleming J, Lin SY. Mie scattering analysis of spherical Bragg ‘onion’ resonators. Opt Express. 2004;12(4):657–669. doi: 10.1364/OPEX.12.000657
  • Liang W, Huang Y, Yariv A, Xu Y, Lin SY. Modification of spontaneous emission in Bragg onion resonators. Opt Express. 2006;14(16):7398–7419. doi: 10.1364/OE.14.007398
  • Sullivan KG, Hall DG. Radiation in spherically symmetric structures I. The coupled-amplitude equations for vector spherical waves. Phys Rev A. 1994;50:2701–2707. doi: 10.1103/PhysRevA.50.2701
  • Brady D, Papen G, Sipe JE. Spherical distributed dielectric resonators. J Opt Soc Am B. 1993;10:644–657. doi: 10.1364/JOSAB.10.000644
  • Burlak GN. Optical radiation from coated microsphere with active core. Phys Lett A. 2002;299:94–101. doi: 10.1016/S0375-9601(02)00618-7
  • Gourevich I, Field LM, Wei Z, et al. Polymer multilayer particles: A route to spherical dielectric resonators. Macromolecules. 2006;39:1449–1454. doi: 10.1021/ma052167o
  • Muševič I, Humar M. Spherical liquid-crystal laser. U.S. Patent Application No. 13/882,514.
  • Humar M, Muševič I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt Express. 2010;18:26995–27003. doi: 10.1364/OE.18.026995
  • Finkelmann H, Kim ST, Muñoz A, Palffy-Muhoray P, Taheri B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater. 2001;13(14):1069–1072. doi: 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
  • Furumi S. Recent progress in chiral photonic band-gap liquid crystals for laser applications. Chem Rec. 2010;10:394–408. doi:10.1002/tcr.201000013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.