241
Views
8
CrossRef citations to date
0
Altmetric
Reviews

From flow birefringence in the isotropic phase of liquid crystals to the identification of shear elasticity in liquids

&
Pages 135-151 | Received 17 Sep 2015, Accepted 08 Dec 2016, Published online: 09 Feb 2017

References

  • Brewster D. On some properties of light. Phil Trans Roy Soc. 1813;103:101–109. doi: 10.1098/rstl.1813.0016
  • Maxwell JC. On the equilibrium of elastic solids. Trans Roy Soc Edinburgh. 1853;20:87–120. doi: 10.1017/S0080456800033044
  • Carothers WH, Hill JW. Studies of polymerizing and ring formation. XV. artificial fibers from the synthetic linear condensation superpolymers. J Am Chem Soc. 1932;54:1579–1587. doi: 10.1021/ja01343a051
  • Hermans PH. Beiträge zur kenntnis des deformationsmechanismus und der feinstruktur der hydratzellulose. Kolloid Z. 1938;83:73–83. doi: 10.1007/BF01510653
  • Vorländer D, Walter R. The mechanically produced double refraction of amorphous liquids and its connection with molecular form. Z Phys Chem. 1925;118:1–30.
  • Sadron C. Sur la birefringence dynamique des liquides purs. J Phys Radium. 1936;7:263–269. doi: 10.1051/jphysrad:0193600706026300
  • Champion JV. Flow anisotropy in the theory of liquids. Proc Phys Soc. 1958;72:711–733. doi: 10.1088/0370-1328/72/5/304
  • Eisenschitz R. The steady non-uniform state for a liquid. Proc Phys Soc A. 1949;62:41–49. doi: 10.1088/0370-1298/62/1/307
  • Zvetkov V. Magnetic and dynamic double refraction in the isotropic phase of substances capable of forming liquid crystals. Acta Phys Chim. 1944;19:86–103.
  • Frenkel J. Kinetic theory of liquids. Oxford: Clarendon Press; 1946.
  • de Gennes PG. Short range order effects in the isotropic phase of nematics and cholesterics. Mol Cryst Liq Cryst. 1971;12:193–214. doi: 10.1080/15421407108082773
  • Reys V, Dormoy Y, Gallani JL, et al. Short-range-order effects in the isotropic phase of a side-chain polymeric liquid crystal. Phys Rev Lett. 1988;61:2340–2343. doi: 10.1103/PhysRevLett.61.2340
  • Rzoska J, Drozd-Rzoska A, Mukherjee PK, et al. Distor- tion-sensitive insight into the pretransitional behavior of 4-n-octyloxy-4′-cyanobiphenyl (8OCB). J Phys Cond Mat. 2013;25:245105. doi: 10.1088/0953-8984/25/24/245105
  • Urban S, Geppi M. Special issue: NMR of liquid crystals. Magn Reson Chem. 2014;52(10):656–663. doi: 10.1002/mrc.4100
  • Litster JD, Thomas W. Stinson, critical slowing of fluctuations in a nematic liquid crystal. J Appl Phys. 1970;41:996–997. doi: 10.1063/1.1659051
  • Domenici V, Frezzato D, Veracini CA. Slow dynamics of banana-shaped molecules: a theoretical approach to analyze 2H-NMR T2 relaxation times. J Chem Phys B. 2006;110(49):24884–24896. doi: 10.1021/jp063442r
  • Stojadinovic S, Adorjan A, Sprunt S, et al. Dynamics of the nematic phase of a bent-core liquid crystal. Phys Rev E. 2002;66(6):060701(R). doi: 10.1103/PhysRevE.66.060701
  • Alaasar M. Azobenzene-containing bent-core liquid crystals: an overview. Liq Cryst. 2016;43(13–15):2208–2243. doi: 10.1080/02678292.2016.1175676.
  • Cerf R, Scheraga H. Flow birefringence in solutions of macromolecules. Chem Revs. 1952;51:185–261. doi: 10.1021/cr60159a001
  • Janeschitz-Kriegel H. Polymer melt rheology and flow birefringence. Berlin: Springer; 1983.
  • Decruppe JP, Cressely R, Makhloufi R, et al. Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Colloid Polym Sci. 1995;273:346–351. doi: 10.1007/BF00652348
  • Schmitt V, Lequeux F, Pousse A, et al. Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers. Langmuir. 1994;10:955–961. doi: 10.1021/la00015a057
  • Berret JF, Roux DC, Porte G, et al. Shear-induced isotropic-to-nematic phase transition in equilibrium polymers. Europhys Lett. 1994;25:521–526. doi: 10.1209/0295-5075/25/7/008
  • See H, Doi M, Larson R. The effect of steady flow fields on the isotropic to nematic phase transition in equilibrium polymers. J Chem Phys. 1990;92:792–800. doi: 10.1063/1.458598
  • Olmsted PD, Lu C-YD. Coexistence and phase separation in sheared complex fluids. Phys Rev E. 1997;56:R55–R58. doi: 10.1103/PhysRevE.56.R55
  • Hess S. Flow alignment and flow-induced phase transition in liquid crystals. Z Naturforsch A. 1976;31a:1507.
  • Olmsted PD, Goldbart PM. Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow. Phys Rev A. 1990;41:4578–4581. doi: 10.1103/PhysRevA.41.4578
  • Olmsted PD, Goldbart PM. Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behavior. Phys Rev A. 1992;46:4966–4993. doi: 10.1103/PhysRevA.46.4966
  • Pujolle-Robic C, Noirez L. Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers. Nature. 2001;409:167–171. doi: 10.1038/35051537
  • Safinya CR, Sirota EB, Plano RJ. Nematic to smectic-A phase transition under shear flow: a nonequilibrium synchrotron x-ray study. Phys Rev Lett. 1991;66:1986–1989. doi: 10.1103/PhysRevLett.66.1986
  • Bailey C, Fodor-Csorba K, Verduzco R, et al. Large flow birefringence of nematogenic bent-core liquid crystals. Phys Rev Lett. 2009;103(23):237803. doi: 10.1103/PhysRevLett.103.237803
  • Cates ME, Milner ST. Role of shear in the isotropic-to-lamellar transition. Phys Rev Lett. 1989;62:1856–1859. doi: 10.1103/PhysRevLett.62.1856
  • Schmitt L, Humbert C, Decruppe JP. Stress optical coefficient of viscoelastic solutions of cetyltrimethylammonium bromide and potassium bromide. Colloid Polym Sci. 1998;276:160–168. doi: 10.1007/s003960050224
  • Roux D, Nallet F, Diat O. Rheology of lyotropic lamellar phases. Europhys Lett. 1993;24:53–58. doi: 10.1209/0295-5075/24/1/009
  • Diat O, Roux D, Nallet F. Effect of shear on a lyotropic lamellar phase. J Phys II. 1993;3:1427–1452.
  • Diat O, Roux D, Nallet F. Layering effect in a sheared lyotropic lamellar phase. Phys Rev E. 1995;51:3296–3299. doi: 10.1103/PhysRevE.51.3296
  • Olmsted PD, David Lu C-Y. Phase separation of rigid-rod suspensions in shear flow. Phys Rev E. 1999;60:4397–4415. doi: 10.1103/PhysRevE.60.4397
  • Cates ME, Fielding SM. Rheology of giant micelles. Adv Phys. 2006;55:799–879. doi: 10.1080/00018730601082029
  • Mendil H, Baroni P, Noirez L. Solid-like rheological response of non-entangled polymers in the molten state. Eur Phys J E. 2006;19:77–87. doi: 10.1140/epje/e2006-00011-x
  • Noirez HM-J, Baroni P, Wendorff JH. Richness of side-chain liquid-crystal polymers: from isotropic phase towards the identification of neglected solid-like properties in liquids. Polymers. 2012;4:1109–1124. doi: 10.3390/polym4021109
  • de Gennes PG, Prost J. The physics of liquid crystals. Oxford: Clarendon Press; 1974.
  • Jimenez ML, Mantegazza F, Gallazzi L, et al. Optical and electro-optical derivation of the pretransitional behavior of orientational and shear viscosities in the isotropic phase of liquid crystals. Phys Rev E. 2006;74:11707. doi: 10.1103/PhysRevE.74.011707
  • Noirez L. Origin of shear-induced phase transitions in melts of liquid-crystal polymers. Phys Rev E. 2005;72(5):051701. doi: 10.1103/PhysRevE.72.051701.
  • Mendil H, Baroni P, Noirez L. Unexpected giant elasticity in side-chain liquid crystal polymer melts: a new approach for the understanding of shear induced phase transitions. Europhys Lett. 2005;72:983–989. doi: 10.1209/epl/i2004-10552-3
  • Kuhn W, Grün F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid-Zeitschrift. 1942;101:248–271. doi: 10.1007/BF01793684
  • Noirez L, Baroni P, Mendil-Jakani H. The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers. Polym Int. 2009;58:962–968. doi: 10.1002/pi.2625
  • Noirez L, Baroni P. Revealing the solid-like nature of glycerol at ambient temperature. J Mol Struct. 2010;16:972.
  • Noirez L, Mendil-Jakani H, Baroni P. Identification of finite shear-elasticity in the liquid state of molecular (OTP) and polymeric glass formers (PBuA). Philos Mag. 2011;91:1977–1986. doi: 10.1080/14786435.2010.536176
  • Mendil H, Baroni P, Grillot I, et al. Frozen states in the isotropic phase of liquid-crystal polymers. Phys Rev Lett. 2006;96:077801. doi: 10.1103/PhysRevLett.96.077801
  • Noirez L, Baroni P. Identification of a low-frequency elastic behaviour in liquid water. J Phys Condens Matter. 2012;24:372101. doi: 10.1088/0953-8984/24/37/372101
  • Kahl P, Baroni P, Noirez L. Hidden solidlike properties in the isotropic phase of the 8CB liquid crystal. Phys Rev E. 2013;88:50501. doi: 10.1103/PhysRevE.88.050501.
  • Kahl P, Baroni P, Noirez L. Harmonic strain-optical response revealed in the isotropic (liquid) phase of liquid crystals. Appl Phys Lett. 2015;107:084101. doi: 10.1063/1.4929321
  • Kahl P, Baroni P, Noirez L. Bringing to light hidden elasticity in the liquid state using in-situ pretransitional liquid crystal swarms. PloS One. 2016;11(2):e0147914. doi: 10.1371/journal.pone.0147914
  • Ferry JD. Viscoelastic properties of polymers. New York: Wiley; 1980.
  • Mason WP, Baker WO, McSkimin HJ, et al. Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys Rev. 1949;75:936–946. doi: 10.1103/PhysRev.75.936
  • Derjaguin BV, Bazaron UB, Zandanova KT et al. The complex shear modulus of polymeric and small-molecule liquids. Polymer. 1989;30:97–103. doi: 10.1016/0032-3861(89)90389-3
  • Derjaguin BV, Bazaron UB, Kh D, et al. Shear elasticity of low-viscosity liquids at low frequencies. Phys Rev A. 1990;42:2255–2258. doi: 10.1103/PhysRevA.42.2255
  • Hu H-W, Granick S. Viscoelastic dynamics of confined polymer melts. Science. 1992;258(5086):1339. doi: 10.1126/science.258.5086.1339
  • Gee ML, McGuiggan PM, Israelachvili JN. Liquid to solidlike transitions of molecularly thin films under shear. J Chem Phys. 1990;93:1895–1906. doi: 10.1063/1.459067
  • Gallani JL, Hilliou L, Martinoty P, et al. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys Rev Lett. 1994;72:2109–2112. doi: 10.1103/PhysRevLett.72.2109
  • Collin D, Martinoty P. Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Physica A. 2003;320:235–248. doi: 10.1016/S0378-4371(02)01524-8
  • Metivier C, Rharbi Y, Magnin A, et al. Stick-slip control of the carbopol microgels on polymethyl methacrylate transparent smooth walls. Soft Matter. 2012;8:7365–7367. doi: 10.1039/c2sm26244d
  • Jadzyn J, Dabrwoski R, Lech T, et al. Viscosity of the homologous series of n-alkylcyanobiphenyls. J Chem Eng Data. 2001;46:110–112. doi: 10.1021/je000219t
  • Farrand LD, Patrick J, Marden SA. Merck patent GmbH EP1690917 B1, 8 Oct. 2008.
  • Mitra M, Paul S, Paul R. Z Naturforsch. Molecular polarizabilities and orientational orderingof two mesogens. 1991;46:858–864.
  • Zywucki BJ, Kuczynski W. The orientational order in nematic liquid crystals from birefringence measurements. IEEE T Dielect El In. 2001;8:512–515. doi: 10.1109/94.933375
  • Kahl P, et al. In preparation.
  • Burghardt WR. Oscillatory shear flow of nematic liquid crystals. J Rheol. 1991;35:49–62. doi: 10.1122/1.550208
  • Colby RH. Linear viscoelasticity of side chain liquid crystal polymers. Liq Crys. 1993;13:233–245. doi: 10.1080/02678299308026297
  • Marrucci G, Greco F. Flow behaviour of liquid crystalline polymers. Adv Chem Phys. 1993;86:331–404.
  • Kannan MR, Kornfield JA, Schwenk N, et al. Rheology of side-group liquid-crystalline polymers: effect of isotropic-nematic transition and evidence of flow alignment. Macromolecules. 1998;31:7445–7452. doi: 10.1021/ma9714272
  • Jerome B, Bosseboeuf A, Pieranski P, et al. Anchoring of nematic liquid crystals on terraced silicon surfaces. Phys Rev A. 1990;42:6032–6041. doi: 10.1103/PhysRevA.42.6032
  • de Gennes PG. Réflexions sur un type de polymères nématiques. C R Acad Sci Paris. 1975;281:101.
  • Terentjev EM, Warner M. Linear hydrodynamics and viscoelasticity of nematic elastomers. Eur Phys J E. 2001;4:343–353. doi: 10.1007/s101890170117
  • Astarita G. Thermodynamics of dissipative materials with entropic elasticity. Polym. Eng. Sci. 1974;14:730–733. doi: 10.1002/pen.760141012
  • Zaccone A, Blundell JR, Terentjev EM. Network disorder and nonaffine deformations in marginal solids. Phys Rev B. 2011;84:174119. doi: 10.1103/PhysRevB.84.174119.
  • Denisov DV, Dang MT, Struth B, et al. Sharp symmetry-change marks the mechanical failure transition of glasses. Sci Rep. 2015;5:14359. doi: 10.1038/srep14359
  • Volino F. Théorie visco-élastique non-extensive VI. application à un liquide formant une phase vitreuse: l’OrthoTerPhényl (OTP). Annales de Physique. 1997;22:181–231. doi: 10.1051/anphys:199701008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.