1,108
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Liquid crystal nanoparticles for commercial drug delivery

, &
Pages 69-85 | Received 03 May 2017, Accepted 27 Jul 2017, Published online: 17 Aug 2017

References

  • Hyde ST. Handbook of applied surface and colloid chemistry. 2001; p. 299. ISBN: 0471 490830.
  • Sagalowicz L, Leser ME, Watzke HJ, et al. Monoglyceride self assembly structures as delivery vehicles. Trends Food Sci Technol. 2006;17:204–214. doi: 10.1016/j.tifs.2005.12.012
  • Mezzenga R, Meyer C, Servais C, et al. Shear rheology of lyotropic liquid crystals: a case study. Langmuir 2005;21:3322–3333. doi: 10.1021/la046964b
  • Malmsten M. Soft drug delivery systems. Soft Matter. 2006;2(9):760–769. doi: 10.1039/b608348j
  • Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41(3):1297–1322. doi: 10.1039/C1CS15148G
  • Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2):121–136. doi: 10.1016/S0168-3659(01)00248-6
  • Swarnakar NK, Thanki K, Jain S. Lyotropic liquid crystalline nanoparticles of coq10: implication of lipase digestibility on oral bioavailability, in vivo antioxidant activity, and in vitro – in vivo relationships. Mol Pharm. 2014;11(5):1435–1449. doi: 10.1021/mp400601g
  • Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res. 2014;31(5):1219–1238. doi: 10.1007/s11095-013-1244-8
  • Qiu H, Caffrey M. Phase behavior of the monoerucin/water system. Chem Phys Lipids. 1999;100(1):55–79. doi: 10.1016/S0009-3084(99)00040-7
  • Makai M, Csanyi E, Dekany I, et al. Structural properties of nonionic surfactant/glycerol/paraffin lyotropic liquid crystals. Colloid Polym Sci. 2003;281(9):839–844. doi: 10.1007/s00396-002-0851-4
  • Hato M, Minamikawa H, Tamada K, et al. Self-assembly of synthetic glycolipid/water systems. Adv Colloid Interface Sci. 1999;80(3):233–270. doi: 10.1016/S0001-8686(98)00085-2
  • Mannock DA, McElhaney RN. Thermotropic and lyotropic phase properties of glycolipid diastereomers: role of headgroup and interfacial interactions in determining phase behaviour. Curr Opin Colloid In. 2004;8(6):426–447. doi: 10.1016/j.cocis.2004.01.009
  • Fong C, Wells D, Krodkiewska I, et al. New role for urea as a surfactant headgroup promoting self-assembly in water. Chem Mater. 2006;18(3):594–597. doi: 10.1021/cm0522681
  • Barauskas J, Landh T. Phase behavior of the phytantriol/water system. Langmuir 2003;19(23):9562–9565. doi: 10.1021/la0350812
  • Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide on demand drug delivery in vitro and in vivo. J Control Release. 2009;135(3):218–226. doi: 10.1016/j.jconrel.2009.01.009
  • Guo C, Wang J, Cao F, et al. Lyotropic liquid crystal systems in drug delivery. Drug Discovery Today. 2010;15(23):1032–1040. doi: 10.1016/j.drudis.2010.09.006
  • Higuchi WI. Analysis of data on the medicament release from ointments. J Pharm Sci. 1962;51(8):802–804. doi: 10.1002/jps.2600510825
  • Boyd BJ. Characterisation of drug release from cubosomes using the pressure ultra-filtration method. Int J Pharm. 2003;260(2):239–247. doi: 10.1016/S0378-5173(03)00262-X
  • Negrini R, Mezzenga R. ph-Responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27(9):5296–5303. doi: 10.1021/la200591u
  • Negrini R, Fong WK, Boyd BJ, et al. ph-Responsive lyotropic liquid crystals and their potential therapeutic role in cancer treatment. Chem Commun. 2015;51(30):6671–6674. doi: 10.1039/C4CC10274F
  • Salentinig S, Sagalowicz L, Glatter O. Self-assembled structures and p k a value of oleic acid in systems of biological relevance. Langmuir. 2010;26(14):11670–11679. doi: 10.1021/la101012a
  • Chang CM, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46(3):215–222. doi: 10.1016/S0168-3659(96)01596-9
  • Li Y, Dong C, Cun D, et al. Lamellar liquid crystal improves the skin retention of 3-o. AAPS Pharm Sci Technol. 2016;17(3):767–777. doi: 10.1208/s12249-015-0353-6
  • Yaghmur A, Laggner P, Zhang S, et al. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLOS One. 2007;2(5):e479. doi: 10.1371/journal.pone.0000479
  • Czeslik C, Winter R, Rapp G, et al. Temperature-and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin. Biophys J. 1995;68(4):1423–1429. doi: 10.1016/S0006-3495(95)80315-2
  • Lendermann J, Winter R. Interaction of cytochrome c with cubic monoolein mesophases at limited hydration conditions: the effects of concentration, temperature and pressure. Phys Chem Chem Phys. 2003;5(7):1440–1450. doi: 10.1039/b209825n
  • Okawara M, Hashimoto F, Todo H, et al. Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats. Int J Pharm. 2014;472(1):257–261. doi: 10.1016/j.ijpharm.2014.06.032
  • Sallam AL, Hamudi FF, Khalil EA. Effect of ethylcellulose and propylene glycol on the controlled-release performance of glyceryl monooleate-mertronidazole periodontal gel. Pharm Dev Technol. 2015;20(2):159–168. doi: 10.3109/10837450.2013.852573
  • Singh NM, Hemant KSY, Ram M, et al. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65–77.
  • Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov. 2005;4:381–385. doi: 10.1038/nrd1721
  • Juliano RL, McCullough HN. Controlled delivery of an antitumor drug: localized action of liposome encapsulated cytosine arabinoside administered via the respiratory system. J Pharmacol Exp Ther. 1980;214(2):381–387.
  • Gabizon A, Dagan A, Goren D, et al. Liposomes as in vivo carriers of Adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 1982;42(11):4734–4739.
  • Koning GA. Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today. 2003;8(11):482–483. doi: 10.1016/S1359-6446(03)02699-0
  • Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol. 2013;4–143-1–7.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:215. doi: 10.3389/fphar.2015.00286
  • Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22(2):129–150. doi: 10.1023/A:1020178304031
  • Monteiro N. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459. doi: 10.1098/rsif.2014.0459
  • Theodoulou M, Hudis C. Cardiac profiles of liposomal anthracyclines: greater cardiac safety versus conventional doxorubicin? Cancer 2004;100:2052–2063. doi: 10.1002/cncr.20207
  • Woodle MC. Sterically stabilized liposome therapeutics. Adv Drug Del Rev. 1995;16:249–265. doi: 10.1016/0169-409X(95)00028-6
  • Boswell GW, Buell D, Bekersky I. Ambisome (Liposomal Amphotericin B): a comparative review. J Clin Pharmacol. 1998;38(7):583–592. doi: 10.1002/j.1552-4604.1998.tb04464.x
  • Forssen E, Willis M. Ligand-targeted liposomes. Adv Drug Deliv Rev. 1998;29(3):249–271. doi: 10.1016/S0169-409X(97)00083-5
  • Oku N, Namba Y. Long-circulating liposomes. Crit Rev Ther Drug Carrier Syst. 1994;11(4):231–270.
  • Chong JYT, Mulet X, Waddington LJ, et al. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter. 2011;7(10):4768–4777. doi: 10.1039/c1sm05181d
  • Chong JYT, Mulet X, Waddington LJ, et al. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir. 2012;28(25):9223–9232. doi: 10.1021/la301874v
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Del Rev. 2013;65:36–48. doi: 10.1016/j.addr.2012.09.037
  • Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12(6):1387–1412. doi: 10.1016/j.cap.2012.03.019
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276X-8-102
  • Westesena K, Bunjesa H, Kochb MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48(2–3):223–236. doi: 10.1016/S0168-3659(97)00046-1
  • Spicer PT. Progress in liquid crystalline dispersions: cubosomes. Cur Opin Colloid Interfac. 2005;10(5–6):274–279. doi: 10.1016/j.cocis.2005.09.004
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–782. doi: 10.1038/nrd2614
  • Lee DR, Park JS, Bae IH, et al. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. Int J Nanomedicine. 2016;11:853–871. doi: 10.2147/IJN.S112415
  • Boyd BJ, Whittaker DV, Khoo SM, et al. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309(1):218–226. doi: 10.1016/j.ijpharm.2005.11.033
  • Dong YD, Larson I, Hanley T, et al. Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir. 2006;22(23):9512–9518. doi: 10.1021/la061706v
  • Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys. 2006;8:4957–4975. doi: 10.1039/b609510k
  • Boyd BJ, Whittaker DV, Khoo SM. Hexosomes formed from glycerate surfactants-formulation as a colloidal carrier for irinotecan. Int J Pharm. 2006;318:154–162. doi: 10.1016/j.ijpharm.2006.03.010
  • Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–2173. doi: 10.1007/s11095-005-8176-x
  • Vandoolaeghe P, Tiberg F, Nylander T. Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces. Langmuir. 2006;22:9169–9174. doi: 10.1021/la061224j
  • Schwarz US, Gompper G. Stability of inverse bicontinuous cubic phases in lipid-water mixtures. Phys Rev Lett. 2000;85(7):1472–1475. doi: 10.1103/PhysRevLett.85.1472
  • Schwarz US, Gompper G. Bending frustration of lipid−water mesophases based on cubic minimal surfaces. Langmuir. 2001;17(7):2084–2096. doi: 10.1021/la0013805
  • Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-T
  • Duesing PM, Templer RH, Seddon JM. Quantifying packing frustration energy in inverse lyotropic mesophases. Langmuir. 1997;13(2):351–359. doi: 10.1021/la960602p
  • Ljusberg-Wahren H, Nyberg L, Larsson K. Dispersion of the cubic liquid crystalline phase – structure, preparation, and functionality aspects. Chim Oggi. 1996;14:40–43.
  • Spicer PT. Cubosome processing industrial nanoparticle technology development. Chem Eng Res Des. 2005;83:1283–1286. doi: 10.1205/cherd.05087
  • Worle G, Drechsler M, Koch MH, et al. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm. 2007;329:150–157. doi: 10.1016/j.ijpharm.2006.08.023
  • Larsson K. Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem. 1989;93(21):7304–7314. doi: 10.1021/j100358a010
  • Barauskas J, Johnsson M, Joabsson F, et al. Cubic phase nanoparticles (cubosome): principles for controlling size, structure, and stability. Langmuir 2005;21:2569–2577. doi: 10.1021/la047590p
  • Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 1999;4:449–456. doi: 10.1016/S1359-0294(00)00020-0
  • Wörle G, Siekmann B, Koch MHJ, et al. Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur J Pharm Sci. 2006;27:44–53. doi: 10.1016/j.ejps.2005.08.004
  • Spicer PT, Small II WB, Small WB, et al. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res. 2002;4:297–311. doi: 10.1023/A:1021184216308
  • Gustafsson J, Ljusberg-Wahren H, Almgren M, et al. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13(26):6964–6971. doi: 10.1021/la970566+
  • Hong SH, Verduzco R, Williams JC, et al. Short-range smectic order in bent-core nematic liquid crystals. Soft Matter. 2010;6:4819–4827. doi: 10.1039/c000362j
  • Angelova A, Angelov B, Garamus VM, et al. Small-angle x-ray scattering investigations of biomolecular con_nement, loading, and release from liquid-crystalline nanochannel assemblies. J Phys Chem Lett. 2012;3(3):445–457. doi: 10.1021/jz2014727
  • Gao M, Kim Y-K, Zhang C, et al. Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging. Microsc Res Tech. 2014;77(10):754–772. doi: 10.1002/jemt.22397
  • Li J, Wu L, Wu W, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1):75–84. doi: 10.1016/j.ijpharm.2013.07.057
  • Boge L, Bysell H, Ringstad L, et al. Lipid-based liquid crystals as carriers for antimicrobial peptides: phase behaviour and antimicrobial effect. Langmuir. 2016;32(17):4217–4228. doi: 10.1021/acs.langmuir.6b00338
  • Niu M, Lu Y, Hovgaard L, et al. Research highlights. Nanomedicine. 2011;6:1155–1158. doi: 10.2217/nnm.11.116
  • Lopes LB, Ferreira DA, De Paula D, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res. 2006;23(6):1332–1342. doi: 10.1007/s11095-006-0143-7
  • Libster D, Ishai PB, Aserin A, et al. Molecular interactions in reversal hexagonal mesophase in the presence of cyclsporin A. Int J Pharm. 2009;367(1):115–126. doi: 10.1016/j.ijpharm.2008.09.048
  • Swarnakar NK, Jain V, Dubey V, et al. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res. 2007;24(12):2223–2230. doi: 10.1007/s11095-007-9409-y
  • Petrilli R, Praca F, Carollo ARH, et al. Nanoparticles of lyotropic liquid crystals: a novel strategy for the topical delivery of a chlorin derivative for photodynamic therapy of skin cancer. Curr Nanosci. 2013;9(4):434–441. doi: 10.2174/1573413711309040003
  • Calixto GM, Bernegossi J, de Freitas LM, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21:342–350. doi: 10.3390/molecules21030342
  • Spillmann CM, Naciri J, Algar WR, et al. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS Nano. 2014;8(7):6986–6997. doi: 10.1021/nn501816z
  • Nag OK, Naciri J, Oh E, et al. Lipid raft-mediated membrane tethering and delivery of hydrophobic cargos from liquid crystal-based nano-carriers. Bioconjug Chem. 2016;27(4):982–993. doi: 10.1021/acs.bioconjchem.6b00042
  • Nag OK, Naciri J, Oh E, et al. Targeted plasma membrane delivery of a hydrophobic cargo encapsulated in a liquid crystal nanoparticle carrier. J Vis Exp. 2017;(120). doi:10.3791/55181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.