497
Views
3
CrossRef citations to date
0
Altmetric
Special issue: Commemorative Issue in honor of the late Professor Maurice Kleman

One-dimensional patterns and topological defects in smectic liquid crystal films

&
Pages 1-18 | Received 12 Feb 2022, Accepted 09 May 2022, Published online: 20 Jul 2022

References

  • Friedel G.. Les états mésomorphes de la matière. Ann Phys (Paris). 1922;18:273–474.
  • Lavrentovich OD, Pergamenshchik VM. Stripe domain phase of a thin nematic film and the K13 divergence term. Phys Rev Lett. 1994;73(7):979–982.
  • Manyuhina OV, Ben Amar M. Thin nematic films: anchoring effects and stripe instability revisited. Phys Rev A. 2013;377(13):1003–1011.
  • Liang HL, Schymura S, Rudquist P, et al. Nematic-smectic transition under confinement in liquid crystalline colloidal shells. Phys Rev Lett. 2011;106(24):247801.
  • Gooden C, Mahmood R, Brisbin D, et al. Simultaneous magnetic-deformation and light-scattering study of bend and twist elastic-constant divergence at the nematic smectic-A-phase transition. Phys Rev Lett. 1985;54(10):1035–1038.
  • Lonberg F, Meyer RB. New ground-state for the splay-Freedericksz transition in a polymer nematic liquid-crystal. Phys Rev Lett. 1985;55(7):718–721.
  • Goscianski M, Leger L, Mircea-Roussel A. Field induced transitions in smectic A phases. J Phys Lett. 1975;36:313–316.
  • Gryn I, Lacaze E, Bartolino R, et al. Controlling the self-assembly of periodic defect patterns in smectic liquid crystal films with electric fields. Adv Funct Mater. 2015;25(1):142–149.
  • Parodi O. A possible magnetic transition in smectics A. Solid State Comm. 1972;11:1503–1507.
  • Zola RS, Bisoyi HK, Wang H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv Mater. 2019;31(7):1806172.
  • Kim YH, Lee J-O, Jeong HS, et al. Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays. Adv Mater. 2010;22(22):2416–2420.
  • Serra F, Gharbi MA, Luo Y, et al. Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses. Adv Opt Mater. 2015;3(9):1287–1292.
  • Son B, Kim S, Kim YH, et al. Optical vortex arrays from smectic liquid crystals. Opt Express. 2014;22(4):4699–4704.
  • Oswald P, Pieranski P. Smectic and columnar liquid crystals. Francis T, editor. Boca Raton: Taylor & Francis; 2006.
  • De Gennes PG. An analogy between superconductors and smectics A. Solid State Comm. 1972;10:753–756.
  • Peddireddy K, Jampani VSR, Thutupalli S, et al. Lasing and waveguiding in smectic A liquid crystal optical fibers. Opt Express. 2013;21(25):30233–30242.
  • Peddireddy K, Čopar S, Le KV, et al. Self-shaping liquid crystal droplets by balancing bulk elasticity and interfacial tension. Proc Natl Acad Sci USA. 2021;118(14):e2011174118.
  • De Gennes PG, Prost J. The physics of liquid crystals. 2nd ed. Oxford: Oxford University Press; 1993.
  • Choi MC, Pfohl T, Wen Z, et al. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc Nat Acad Sci USA. 2004;101(50):17340–17344.
  • Do S-P, Missaoui A, Coati A, et al. From chains to monolayers: nanoparticle assembly driven by smectic topological defects. Nano Lett. 2020;20(3):1598–1606.
  • Yoon DK, Choi MC, Kim YH, et al. Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nat Mater. 2007;6(11):866–870.
  • Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv Mater. 2012;24(11):1461–1465.
  • Milette J, Relaix S, Lavigne C, et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter. 2012;8(24):6593–6598.
  • Coursault D, Blach J-F, Grand J, et al. Tailoring anisotropic interactions between soft nanospheres using dense arrays of smectic liquid crystal edge dislocations. ACS Nano. 2015;9(12):11678–11689.
  • Honglawan A, Kim DS, Beller DA, et al. Synergistic assembly of nanoparticles in smectic liquid crystals. Soft Matter. 2015;11(37):7367–7375.
  • Gryn I, Lacaze E, Carbone L, et al. Electric-field-controlled alignment of rod-shaped fluorescent nanocrystals in smectic liquid crystal defect arrays. Adv Funct Mater. 2016;26(39):7122–7131.
  • Rozic B, Fresnais J, Molinaro C, et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects. ACS Nano. 2017;11(7):6728–6738.
  • Kim YH, Yoon DK, Jeong HS, et al. Fabrication of a superhydrophobic surface from a smectic liquid-crystal defect array. Adv Funct Mater. 2009;19(18):3008–3013.
  • Kim YH, Yoon DK, Jeong HS, et al. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications. Adv Funct Mater. 2011;21(4):610–627.
  • Designolle V, Herminghaus S, Pfohl T, et al. AFM study of defect-induced depressions of the smectic-A/air interface. Langmuir. 2006;22(1):363–368.
  • Gim MJ, Beller DA, Yoon DK. Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition. Nat Comm. 2017;8:1–9.
  • Cladis PE, Torza S. Growth of a smectic A from a bent nematic phase and the smectic light valve. J Appl Phys. 1975;46:584–599.
  • Ruan LZ, Sambles JR, Stewart IW. Self-organized periodic photonic structure in a nonchiral liquid crystal. Phys Rev Lett. 2003;91(3):033901.
  • Pishnyak OP, Nastishin YA, Lavrentovich OD. Comment on “self-organized periodic photonic structure in a nonchiral liquid crystal”. Phys Rev Lett. 2004;93(10):109401.
  • Zappone B, Mamuk AE, Gryn I, et al. Analogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductors. Proc Natl Acad Sci USA. 2020;117(30):17643–17649.
  • Oswald P, Colombier J. On the measurement of the bend elastic constant in nematic liquid crystals close to the nematic-to-SmA and the nematic-to-NTB phase transitions. Liq Cryst. 2021;48:1–25.
  • Zappone B, Meyer C, Bruno L, et al. Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter. 2012;8(16):4318.
  • Liang HL, Zentel R, Rudquist P, et al. Towards tunable defect arrangements in smectic liquid crystal shells utilizing the nematic-smectic transition in hybrid-aligned geometries. Soft Matter. 2012;8(20):5443–5450.
  • Allet C, Kleman M, Vidal P. Striped patterns in a thin droplet of a smectic C phase. J Phys France II. 1978;39:181–188.
  • Michel JP, et al. Optical gratings formed in thin smectic films frustrated on a single crystalline substrate. Phys Rev E. 2004;70(1):011709.
  • Michel J-P, Lacaze E, Goldmann M, et al. Structure of smectic defect cores: x-ray study of 8CB liquid crystal ultrathin films. Phys Rev Lett. 2006;96(2):027803.
  • Lacaze E, Michel J-P, Alba M, et al. Planar anchoring and surface melting in the smectic-A phase. Phys Rev E. 2007;76(4):041702.
  • Pelliser L, Manceau M, Lethiec C, et al. Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals. Adv Funct Mater. 2015;25(11):1719–1726.
  • Wu SB, Ma L-L, Chen P, et al. Smectic defect engineering enabled by programmable photoalignment. Adv Opt Mater. 2020;8(17):20005931–7.
  • Fournier JB, Dozov I, Durand G. Surface frustration and texture instability in smectic-A liquid crystals. Phys Rev A. 1990;41(4):2252–2255.
  • Blanc C, Kleman M. Curvature walls and focal conic domains in a lyotropic lamellar phase. Eur Phys J B. 1999;10(1):53–60.
  • Zappone B, Lacaze E. Surface-frustrated periodic textures of smectic-A liquid crystals on crystalline surfaces. Phys Rev E. 2008;78(6):061704.
  • Zappone B, Lacaze E, Hayeb H, et al. Self-ordered arrays of linear defects and virtual singularities in thin smectic-A films. Soft Matter. 2011;7(3):1161–1167.
  • Coursault D, Zappone B, Coati A, et al. Self-organized arrays of dislocations in thin smectic liquid crystal films. Soft Matter. 2016;12(3):678–688.
  • Nemitz IR, Gryn I, Boudet N, et al. Observations of a streak texture in the hybrid-aligned smectic-C phase. Soft Matter. 2018;14(3):460–469.
  • Xia J, MacLachlan S, Atherton TJ, et al. Structural landscapes in geometrically frustrated smectics. Phys Rev Lett. 2021;126(17):177801.
  • Kléman M. Points, lines and and walls in liquid crystals, magnetic systems and various ordered systems. New York: Wiley; 1983.
  • Lacaze E, Apicella A, De Santo MP, et al. Ordered interfaces for dual easy axes in liquid crystals. Soft Matter. 2011;7(3):1078–1083.
  • Yethiraj A. Recent experimental developments at the nematic to smectic-A liquid crystal phase transition. In: Ramamoorthy A, editor. Thermotropic liquid crystals: recent advances. Dordrecht: Springer; 2007. p. 235–248.
  • Pevnyi MY, Selinger JV, Sluckin TJ. Modeling smectic layers in confined geometries: order parameter and defects. Phys Rev E. 2014;90(3):032507.
  • Poole CP, et al. Superconductivity. Chap. 11. London: Academic Press; 2007.
  • Prozorov R. Equilibrium topology of the intermediate state in type-I superconductors of different shapes. Phys Rev Lett. 2007;98(25):257001.
  • Prozorov R, Fidler AF, Hoberg JR, et al. Suprafroth in type-I superconductors. Nat Phys. 2008;4(4):327–332.
  • Renn R, Lubensky TC. Abrikosov dislocation lattice in a model of the cholesteric – to – smectic-A transition. Phys Rev A. 1988;38:2132–2147.
  • Nguyen HT, Bouchta A, Navailles L, et al. TGBA and TGBC phases in some chiral tolan derivatives. J Phys France II. 1992;2:1889–1906.
  • Nastishin YA, Kléman M, Malthête J, et al. Identification of a TGBA liquid crystal phase via its defects. Eur Phys J E. 2001;5(3):353–357.
  • Asnacios S, Meyer C, Nastishin YA, et al. Rheological properties of chiral liquid crystals possessing a cholesteric-smectic A transition. Liq Cryst. 2004;31(4):593–599.
  • Ruan LZ, Osipov MA, Sambles JR. Coexisting nematic and smectic-A phases in a twisted liquid-crystal cell. Phys Rev Lett. 2001;86(20):4548–4551.
  • Dozov I, Durand G. Quantized grain boundaries in bent smectic-A liquid crystals. Eur Phys Lett. 1994;28(1):25–30.
  • Wang RT, Syed IM, Carbone G, et al. Bend-induced melting of the smectic-A phase: analogy to a type-I superconductor. Phys Rev Lett. 2006;97(16):167802.
  • Nobili M, Durand G. Disorientation-induced disordering at a nematic-liquid-crystal solid interface. Phys Rev A. 1992;46(10):R6174–R6177.
  • Wittebrood MM, Rasing T, Stallinga S, et al. Confinement effects on the collective excitations in thin nematic films. Phys Rev Lett. 1998;80(6):1232–1235.
  • Ma L-L, Tang M-J, Hu W, et al. Smectic layer origami via preprogrammed photoalignment. Adv Mater. 2017;29(15):1606671.
  • Rapini A. Instabilités magnétiques d’un smectique C. Journal de Physique Colloques. 1972;33:237–247.
  • Jones C. Bistable liquid crystal displays. In: Chen J, Cranton W, Fihn M, editors. Handbook of visual display technology. Berlin: Springer; 2012. p. 1507–1543.
  • Lavrentovich OD, Kléman M, Pergamenshchik VM. Nucleation of focal conic domains in smectic A liquid crystals. J Phys II. 1994;4:377–404.
  • Li Z, Lavrentovich OD. Surface anchoring and growth pattern of the field-driven first-order transition in a smectic-A liquid crystal. Phys Rev Lett. 1994;73(2):280–283.
  • Contreras A, Garcia-Azpeitia C, García-Cervera CJ, et al. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field. Nonlinearity. 2016;29(8):2474–2496.
  • Hinov HP. Formation of a smectic A phase from a strongly deformed planar nematic liquid crystal CBOOA. J Phys. 1981;42(2):307–315.
  • Hinov HP, Pisipati VGKM. Influence of the smectic A-nematic transitional order on the formation of the smectic phases of 4-n-hexyloxybenzylidene-4′-n-butyIaniline and 4-n-butyloxybenzylidene-4′-n-octyIaniline from an electrically deformed nematic phase. Mol Cryst Liq Cryst. 1990;8(2):193–209.
  • Hareng M, Berre SL, Thirant L. Electric field effects on biphenyl smectic A liquid crystals. Appl Phys Lett. 1974;25(12):683–685.
  • Jákli A, Saupe A. Electro-optic effects in smectic a phase. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 1992;222(1):101–109.
  • Findon A, Gleeson H, Lydon J. Realignment of a smectic-A phase with applied electric field. Phys Rev E. 2000;62(4):5137–5142.
  • Boniello G, Vilchez V, Garre E, et al. Making smectic defect patterns electrically reversible and dynamically tunable using in situ polymer-templated nematic liquid crystals. Macromol Rapid Commun. 2021;42(11):2100087.
  • Senyuk B, Evans JS, Ackerman PJ, et al. Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett. 2012;12(2):955–963.
  • Yoshida H, Tanaka Y, Kawamoto K, et al. Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express. 2009;2(12):121501.
  • Karatairi E, Rožič B, Kutnjak Z, et al. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys Rev E. 2010;81(4):041703.
  • Rožič B, Tzitzios V, Karatairi E, et al. Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation. Eur Phys J E. 2011;34(2):17.
  • Cordoyiannis G, Rao Jampani VS, Kralj S, et al. Different modulated structures of topological defects stabilized by adaptive targeting nanoparticles. Soft Matter. 2013;9(15):3956–3964.
  • Evans JS, Ackerman PJ, Broer DJ, et al. Optical generation, templating, and polymerization of three-dimensional arrays of liquid-crystal defects decorated by plasmonic nanoparticles. Phys Rev E. 2013;87(3):032503.
  • Gharbi MA, Manet S, Lhermitte J, et al. Reversible nanoparticle cubic lattices in blue phase liquid crystals. ACS Nano. 2016;10(3):3410–3415.
  • Geminard JC, Laroche C, Oswald P. Edge dislocation in a vertical smectic-A film: line tension versus film thickness and Burgers vector. Phys Rev E. 1998;58(5):5923–5925.
  • Jeridi H, De Dieu Niyonzima J, Sakr C, et al. Unique orientation of 1D and 2D nanoparticle assemblies confined in smectic topological defects. Soft Matter. 2022;18:4792–4802.
  • Kim DS, Cha YJ, Gim M-J, et al. Fast fabrication of Sub-200-nm nanogrooves using liquid crystal material. ACS Appl Mater Interfaces. 2016;8(18):11851–11856.
  • Nemitz IR, Ferris AJ, Lacaze E, et al. Chiral oily streaks in a smectic-A liquid crystal. Soft Matter. 2016;12(31):6662–6668.
  • Guo W, Bahr C. Influence of anchoring strength on focal conic domains in smectic films. Phys Rev E. 2009;79(1):011707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.