2,084
Views
0
CrossRef citations to date
0
Altmetric
Article

Adaptive warehouse storage location assignment with considerations to order-picking efficiency and worker safety

, , , , &
Pages 40-59 | Received 19 May 2023, Accepted 19 Sep 2023, Published online: 09 Oct 2023

References

  • Reyes JJR, Solano-Charris EL, Montoya-Torres JR. The storage location assignment problem: a literature review. Int J Ind Eng Comput. 2019;10(2):199–224. doi: 10.5267/j.ijiec.2018.8.001
  • Kofler M. Optimising the storage location assignment problem under dynamic conditions[dissertation]. Linz (Austria): Johannes Kepler University; 2014.
  • Frazelle EH. Stock location assignment and order picking productivity[dissertation]. Atlanta(GA), USA: Georgia Institute of Technology; 1998.
  • Barreto L, Amaral A, Pereira T. Industry 4.0 implications in logistics: an overview. Procedia Manuf. 2017;13:1245–1252. doi: 10.1016/j.promfg.2017.09.045
  • Mosallaeipour S, Nazerian R, Ghadirinejad M. Industrial Engineering in the industry 4.0 era. Industrial Engineering in the industry 4.0 era. 2018; pp. 63–81. doi: 10.1007/978-3-319-71225-3_6
  • Rouwenhorst B, Reuter B, Stockrahm V, et al. Warehouse design and control: framework and literature review. Eur J Oper Res. 2000;122(3):515–533. doi: 10.1016/S0377-2217(99)00020-X
  • Vanheusden S, van Gils T, Ramaekers K, et al. Practical factors in order picking planning: state-of-the-art classification and review. Int J Prod Res. 2022;61(6):2032–2056. doi: 10.1080/00207543.2022.2053223
  • De Lombaert T, Braekers K, De Koster R, et al. In pursuit of humanised order picking planning: methodological review, literature classification and input from practice. Int J Prod Res. 2022;61(10):3300–3330. doi: 10.1080/00207543.2022.2079437
  • Ghobakhloo M, Iranmanesh M, Tseng ML, et al. Behind the definition of industry 5.0: a systematic review of technologies, principles, components, and values. J Ind Prod Eng. 2023;40(6):432–447. doi: 10.1080/21681015.2023.2216701
  • Aneziris ON, Papazoglou IA, Mud M, et al. Occupational risk quantification owing to falling objects. Saf Sci. 2014;69:57–70. doi: 10.1016/j.ssci.2014.02.017
  • Zhan X, Wu W, Shen L, et al. Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse. Saf Sci. 2022;152:105766. doi: 10.1016/j.ssci.2022.105766
  • The Most Common Areas for Warehouse Dangers. American National Standard Institute. 2018. https://blog.ansi.org/2018/06/most-common-areas-warehouse-dangers/#gref
  • Hofstra N, Petkova B, Dullaert W, et al. Assessing and facilitating warehouse safety. Saf Sci. 2018;105:134–148. doi: 10.1016/j.ssci.2018.02.010
  • Gille C, Gunn E. A review of warehouse models. Eur J Oper Res. 1992;58(1):3–13. doi: 10.1016/0377-2217(92)90231-W
  • Zhang RQ, Wang M, Pan X. New model of the storage location assignment problem considering demand correlation pattern. Comput Ind Eng. 2019;129:210–219. doi: 10.1016/j.cie.2019.01.027
  • Petersen CG. The impact of routing and storage policies on warehouse efficiency. Int J Oper Prod Manag. 1999;19(10):1053–1064. doi: 10.1108/01443579910287073
  • Turner S. Joint Multi-item Storage Location Assignment Capacitated Lot Sizing Problem[master’s thesis]. Windsor(ON): University of Windsor; 2009.
  • Gagliardi JP, Renaud J, Ruiz A. On storage assignment policies for unit-load automated storage and retrieval systems. Int J Prod Res. 2012;50(3):879–892. doi: 10.1080/00207543.2010.543939
  • Ramtin F, Pazour JA. Product allocation problem for an AS/RS with multiple in-the-aisle pick positions. IIE Trans Institute Ind Eng. 2015;47(12):1379–1396. doi: 10.1080/0740817X.2015.1027458
  • Zhang G, Nishi T, Turner SDO, et al. An integrated strategy for a production planning and warehouse layout problem: modeling and solution approaches. Omega (United Kingdom). 2017;68:85–94. doi: 10.1016/j.omega.2016.06.005
  • Lesch V, Müller PBM, Krämer M, et al. Optimizing storage assignment, order picking, and their interaction in mezzanine warehouses. Appl Intell. 2023;53(15):18605–18629. doi: 10.1007/s10489-022-04443-x
  • Yang P, Miao L, Xue Z, et al. An integrated optimization of location assignment and storage/retrieval scheduling in multi-shuttle automated storage/retrieval systems. J Intell Manuf. 2015;26(6):1145–1159. doi: 10.1007/s10845-013-0846-7
  • Guerriero F, Musmanno R, Pisacane O, et al. A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints. Appl Math Model. 2013;37(6):4385–4398. doi: 10.1016/j.apm.2012.09.015
  • Sanei O, Nasiri V, Marjani MR, et al. A heuristic algorithm for the warehouse space assignment problem considering operational constraints: with application in a case study. In: Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management; Kuala lumpur (Malaysia). 2011. 258–264.
  • Silva A, Coelho LC, Darvish M, et al. Integrating storage location and order picking problems in warehouse planning. Transp Res Part E Logist Transp Rev. 2020;140(April):102003. doi: 10.1016/j.tre.2020.102003
  • Kübler P, Glock CH, Bauernhansl T. A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses. Comput Ind Eng. 2020;147:106645. doi: 10.1016/j.cie.2020.106645
  • Bortolini M, Botti L, Cascini A, et al. Unit-load storage assignment strategy for warehouses in seismic areas. Comput Ind Eng. 2015;87:481–490. doi: 10.1016/j.cie.2015.05.023
  • Larco JA, de Koster R, Roodbergen KJ, et al. Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions. Int J Prod Res. 2017;55(21):6407–6422. doi: 10.1080/00207543.2016.1165880
  • Heragu SS, Du L, Mantel RJ, et al. Mathematical model for warehouse design and product allocation. Int J Prod Res. 2005;43(2):327–338. doi: 10.1080/00207540412331285841
  • Zaerpour N, De Koster RBM, Yu Y. Storage policies and optimal shape of a storage system. Int J Prod Res. 2013;51(23–24):6891–6899. doi: 10.1080/00207543.2013.774502
  • Kovács A. Optimizing the storage assignment in a warehouse served by milkrun logistics. Int J Prod Econ. 2011;133(1):312–318. doi: 10.1016/j.ijpe.2009.10.028
  • Borangiu T, Trentesaux D, Thomas A, et al. Adaptive storage location assignment for warehouses using intelligent products. Stud Comput Intell. 2016;271–279. doi: 10.1007/978-3-319-15159-5_25
  • Mirzaei M, Zaerpour N, de Koster R. The impact of integrated cluster-based storage allocation on parts-to-picker warehouse performance. Transp Res Part E Logist Transp Rev. 2021;146:146. doi: 10.1016/j.tre.2020.102207
  • Li J, Moghaddam M, Nof SY. Dynamic storage assignment with product affinity and ABC classification—a case study. Int J Adv Manuf Technol. 2016;84(9–12):2179–2194. doi: 10.1007/s00170-015-7806-7
  • Chiang DMH, Lin CP, Chen MC. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterp Inf Syst. 2011;5(2):219–234. doi: 10.1080/17517575.2010.537784
  • Ming-Huang Chiang D, Lin CP, Chen MC. Data mining based storage assignment heuristics for travel distance reduction. Expert Syst. 2014;31(1):81–90. doi: 10.1111/exsy.12006
  • Walter R, Boysen N, Scholl A. The discrete forward-reserve problem - allocating space, selecting products, and area sizing in forward order picking. Eur J Oper Res. 2013;229(3):585–594. doi: 10.1016/j.ejor.2013.02.047
  • Chou YC, Chen YH, Chen HM. Recency-based storage assignment and warehouse configuration for recurrent demands. Comput Ind Eng. 2012;62(4):880–889. doi: 10.1016/j.cie.2011.12.009
  • Choy KL, Ho GTS, Lee CKH. A RFID-based storage assignment system for enhancing the efficiency of order picking. J Intell Manuf. 2017;28(1):111–129. doi: 10.1007/s10845-014-0965-9
  • Yang L, Xu Y, Zheng Y, et al. Research on location assignment model of intelligent warehouse with RFID and improved particle swarm optimization algorithm. 2017. Int Conf Comput Syst Electron Control ICCSEC 2017. 2018;1262–1266. doi: 10.1109/ICCSEC.2017.8446952
  • Courtin P, Grimault A, Lhommeau M, et al. Dynamic storage location assignment problem at Knapp company : toward reinforcement learning? Problematic and state of the art. Angers, Fr: Artif Intell Platform; 2020.
  • Tabatabaei S-K, Valilai OF, Abedian A, et al. A novel framework for storage assignment optimization inspired by finite element method. PeerJ Comput Sci. 2021;7:e378. doi: 10.7717/peerj-cs.378
  • Wachter JK, Yorio PL. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation. Accid Anal Prev. 2014;68:117–130. doi: 10.1016/j.aap.2013.07.029
  • de Koster R, Le-Duc T, Roodbergen KJ. Design and control of warehouse order picking: a literature review. Eur J Oper Res. 2007;182(2):481–501. doi: 10.1016/j.ejor.2006.07.009
  • Durdevic D, Andrejic M, Pavlov N. Framework for improving warehouse safety. 5th Logist Int Conf. 2022;304–313. doi: 10.37528/FTTE/9788673954530.LO
  • Kostrzewski M. Securing of safety by monitoring of technical parameters in warehouse racks, in high-bay warehouses and high storage warehouses – literature review of the problem. LogForum. 2017;13(2):125–134. doi: 10.17270/J.LOG.2017.2.1
  • Downie B, Gyöngyösi M, Kuehl C. Artificial intelligence in materials handling: how machine learning tools boost warehouse safety, productivity and cost-effectiveness. J Supply Chain Manag Logist Procure. 2021;4(1):6–16.
  • Gu J, Goetschalckx M, McGinnis LF. Research on warehouse operation: a comprehensive review. Eur J Oper Res. 2007;177(1):1–21. doi: 10.1016/j.ejor.2006.02.025
  • WorkSafe Victoria. A guide to handling large, bulky or awkward items. Australia; 2012.
  • WorkSafe Victoria. Pallet racking operation and maintenance. Australia; 2012.
  • Bartholdi J, Hankman S. Warehouse & distribution Science Release 0.98. Vol. 25. Atlanta (GA): Supply Chain Logist Inst; 2019.
  • Wales DJ, Doye JPK. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A. 1997;101(28):5111–5116. doi: 10.1021/jp970984n
  • Xiang Y, Gubian S, Suomela B, et al. Generalized simulated annealing for global optimization: the GenSA package. R J. 2013;5(1):13–28. doi: 10.32614/RJ-2013-002
  • Ben-Ameur W. Computing the initial temperature of simulated annealing. Comput Optim Appl. 2004;29(3):369–385. doi: 10.1023/B:COAP.0000044187.23143.bd
  • Zhao Y, Chen X, Li J. Tgmin: a global-minimum structure search program based on a constrained basin-hopping algorithm. Nano Res. 2017;10(10):3407–3420. doi: 10.1007/s12274-017-1553-z
  • Žunić E, Beširević A, Delalić S, et al. A generic approach for order picking optimization process in different warehouse layout. 41st International Convention On Information And Communication Technology, Electronics And Microelectronics (MIPRO). 2018;1000–1005. doi: 10.23919/MIPRO.2018.8400183
  • Bestuzheva K, Besançon M, Chen W-K, et al. The SCIP optimization suite 8.0. 2021. https://optimization-online.org/?p=18429
  • Perron L, Furnon V. OR-Tools v9.5. Google. 2022. Available from: https://developers.google.com/optimization/
  • Curtin K. Operations research. In Encyclopedia of social measurement. Elsevier; 2005. pp. 925–931. doi:10.1016/B0-12-369398-5/00534-X.
  • Alrawahi AS, Lee K, Lotfi A. A multiobjective QoS model for trading cloud of Things Resources. IEEE Internet Things J. 2019;6(6):9447–9463. doi: 10.1109/JIOT.2019.2943284
  • Zarinchang A, Faghih N, Zarinchang J. An application of genetic algorithm toward solving the reliability problem of multiobjective series-parallel systems. Eksploat i Niezawodn. 2012;14(3):243–248.