107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AHP-DEMATEL construction of sustainable design decision for indoor vertical greening system

, , , &
Pages 362-379 | Received 24 Aug 2023, Accepted 09 Jan 2024, Published online: 08 Feb 2024

References

  • Paull NJ, Irga PJ, Torpy FR. Active green wall plant health tolerance to diesel smoke exposure. Environ Pollut. 2018;240:448–456.
  • Wang J, Liu S, Meng X, et al. Application of retro-reflective materials in urban buildings: a comprehensive review. Energy Build. 2021;247:111137.
  • Daemei AB, Azmoodeh M, Zamani Z et al. Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. J Build Eng. 2018;20:277–284.
  • Wang J, Liu S, Liu Z. An experimental comparison on regional thermal environment of the high-density enclosed building groups with retro-reflective and high-reflective coatings. Energy Build. 2022;259:111864.
  • Meng X, Meng L, Gao Y, et al . A comprehensive review on the spray cooling system employed to improve the summer thermal environment: application efficiency, impact factors, and performance improvement. Build Environ 2017. 2022 ;109065.
  • Desert A, Naboni E, Garcia D. The spatial comfort and thermal delight of outdoor misting installations in hot and humid extreme environments. Energy Build. 2020;224:110202. doi: 10.1016/j.enbuild.2020.110202
  • Fleck, R., Gill, R. L., Pettit, T., Irga, P. J., Williams, N. L. R., Seymour, J. R., & Torpy, F. R. Characterisation of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal. Build Environ. 2020;179:106987. doi: 10.1016/j.buildenv.2020.106987
  • Gao X, Jali ZM, Aziz AA, et al. Inherent health oriented design for preventing sick building syndrome during planning stage. J Build Eng. 2021;44:103285. doi: 10.1016/j.jobe.2021.103285
  • Fu X, Norbäck D, Yuan Q, et al. Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia. Sci Total Environ. 2021;753:141904. doi: 10.1016/j.scitotenv.2020.141904
  • Jafari MJ, Khajevandi AA, Najarkola SAM, et al. Association of sick building syndrome with indoor air parameters. Tanaffos. 2015;14(1):55.
  • Gao Y, He F, Meng X, et al. Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J Build Eng. 2020;31:101447. doi: 10.1016/j.jobe.2020.101447
  • Suarez-Caceres GP, Fernandez-Canero R, Fernandez-Espinosa AJ, et al. Volatile organic compounds removal by means of a felt-based living wall to improve indoor air quality. Atmos Pollut Res. 2021;12(3):224–229. doi: 10.1016/j.apr.2020.11.009
  • Pérez-Urrestarazu, L., Fernández-Cañero, R., Franco, A., & Egea, G. Influence of an active living wall on indoor temperature and humidity conditions. Ecol Eng. 2016;90:120–124. doi: 10.1016/j.ecoleng.2016.01.050
  • Blanco I, Schettini E, Vox G. Predictive model of surface temperature difference between green façades and uncovered wall in Mediterranean climatic area. Appl Therm Eng. 2019;163:114406. doi: 10.1016/j.applthermaleng.2019.114406
  • Abdo P, Huynh BP. An experimental investigation of green wall bio-filter towards air temperature and humidity variation. J Build Eng. 2021;39:102244. doi: 10.1016/j.jobe.2021.102244
  • Azkorra Z, Pérez G, Coma J, et al. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl Acoust. 2015;89:46–56. doi: 10.1016/j.apacoust.2014.09.010
  • Manso M, Castro-Gomes JP. Thermal analysis of a new modular system for green walls. J Buil Eng. 2016;7:53–62. doi: 10.1016/j.jobe.2016.03.006
  • Perini K, Ottelé M, Fraaij ALA, et al. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ. 2011;46(11):2287–2294. doi: 10.1016/j.buildenv.2011.05.009
  • Santamouris M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy. 2014;103:682–703. doi: 10.1016/j.solener.2012.07.003
  • Su YM, Lin CH. シマオオタニワタリを用いた緑のカーテンによる室内の二酸化炭素およびホルムアルデヒドの除去. Hortic J. 2015;84(1):69–76.
  • Pugh TA, MacKenzie AR, Whyatt JD, et al. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol. 2012;46(14):7692–7699. doi: 10.1021/es300826w
  • Rahman AM, Yeok FS, Amir AF. The building thermal performance and carbon sequestration evaluation for psophocarpus tetrogonobulus on biofacade wall in the tropical environment. Int J Environ And Ecol Eng. 2011;5(4):206–214.
  • Torpy F, Clements N, Pollinger M, et al. Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Qual Atmos Health. 2018;11(2):163–170. doi: 10.1007/s11869-017-0518-4
  • Rivera E. Quantifying CO2 removal by living walls: a case study of the Center for Design Research. Journal Of Undergradate Reserach; 2014.
  • Liu F, Yan L., Meng X., et al. A review on indoor green plants employed to improve indoor environment. J Build Eng. 2022;53:104542.
  • Perez G, Rincon L, Vila A, et al. Green vertical systems for buildings as passive systems for energy savings. Appl Energy. 2011;88(12):4854–4859. doi: 10.1016/j.apenergy.2011.06.032
  • Dunnett N, Kingsbury N. Planting green roofs and living walls. Portland, OR: Timber press; 2008.
  • Manso M, Castro-Gomes J. Green wall systems: a review of their characteristics. Renew Sust Energ Rev. 2015;41:863–871. doi: 10.1016/j.rser.2014.07.203
  • Sireli Y, Kauffmann P, Ozan E. Integration of Kano’s model into QFD for multiple product design. IEEE Trans Eng Manage. 2007;54(2):380–390. doi: 10.1109/TEM.2007.893990
  • Ji P, Jin J, Wang T, et al. Quantification and integration of Kano’s model into QFD for optimising product design. Int J P Res. 2014;52(21):6335–6348. doi: 10.1080/00207543.2014.939777
  • Mendoza N, Ahuett H, Molina A. Case studies in the integration of QFD, VE and DFMA during the product design stage. Proceedings of the 9th International Conference on Concurrent Engineering; Espoo, Finland; 2003.
  • Sachs JD, Schmidt-Traub G, Mazzucato M, et al. Six transformations to achieve the sustainable development goals. Nat Sustain. 2019;2(9):805–814. doi: 10.1038/s41893-019-0352-9
  • Xu S. Interaction between Digital Economy and environmental pollution: new evidence from a spatial perspective. Int J Environ Res Public Health. 2022;19(9):5074. Gómez-González, S. doi: 10.3390/ijerph19095074
  • Ochoa-Hueso R, Pausas JG. Afforestation Falls short as a biodiversity strategy. Science. 2020;368:1438–1439.
  • Zhang H, Li H, Liu S, et al. (2019). Product design innovation method and practice based on sustainable design. Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SD M-18) 5, Gold Coast, Australia; Springer International Publishing; 2019. p. 41–50.
  • Roetzel A, Fuller R, Rajagopalan P. Integral sustainable design–reflections on the theory and practice from a case study. Sustainable Cities Soc. 2017;28:225–232. doi:10.1016/j.scs.2016.09.002
  • Ceschin F, Gaziulusoy I. Evolution of design for sustainability: from product design to design for system innovations and transitions. Des Stud. 2016;47:118–163. doi:10.1016/j.destud.2016.09.002
  • Alhmoud SH (2021, November). Investigations of greenery façade approaches for the Energy Performance Improvement of Buildings and sustainable cities. In International Conference on Natural Resources and Sustainable Environmental Management (pp. 230–239). Cham: Springer International Publishing.
  • Tate D, Maxwell T, Ertas A, et al. Transdisciplinary approaches for teaching and assessing sustainable design. Int J Eng Edu. 2010;26(2):418.
  • Jato-Espino D, Sañudo-Fontaneda LA, Andrés-Valeri VC. Green infrastructure: cost-effective nature-based solutions for safeguarding the environment and protecting human health and well-being. Handb environ mater manage. 2018;1-27:1525–1550.
  • Meral A, Başaran N, Yalçınalp E, et al. A comparative approach to artificial and natural green walls according to ecological sustainability. Sustainability. 2018;10(6):1995. doi: 10.3390/su10061995
  • Alexandri E, Jones P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ. 2008;43(4):480–493. doi: 10.1016/j.buildenv.2006.10.055
  • Yoshimi J, Altan H. Thermal simulations on the effects of vegetated walls on indoor building environments. Proceedings of Building Simulation, Sydney, Australia; 2011. p. 1438–1443.
  • Torpy FR, Zavattaro M, Irga PJ, et al. (2015). Assessing the air quality remediation capacity of the JUNGLEFY breathing wall-Modular plant wall system (p. 61). Research Report.
  • Soreanu G, Dixon M, Darlington A. Botanical biofiltration of indoor gaseous pollutants–A mini-review. Chem Eng J. 2013;229:585–594. doi: 10.1016/j.cej.2013.06.074
  • Guieysse B, Hort C, Platel V, et al. Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv. 2008;26(5):398–410. doi: 10.1016/j.biotechadv.2008.03.005
  • Torpy FR, Irga PJ, Burchett MD. Reducing indoor air pollutants through biotechnology. Biotechnol And Biomimetics For Civil Eng. 2015;181–210.
  • Dela Cruz M, Müller R, Svensmark B, et al. Assessment of volatile organic compound removal by indoor plants—a novel experimental setup. Environ Sci Pollut Res. 2014;21(13):7838–7846. doi: 10.1007/s11356-014-2695-0
  • Torpy FR, Zavattaro M, Irga PJ. Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO 2 concentrations. Air Qual Atmos Health. 2017;10(5):575–585. doi: 10.1007/s11869-016-0452-x
  • Wang Z, Zhang JS. Characterization and performance evaluation of a full-scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Build Environ. 2011;46(3):758–768. doi: 10.1016/j.buildenv.2010.10.008
  • Darlington AB, Dat JF, Dixon MA. The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ Sci Technol. 2001;35(1):240–246. doi: 10.1021/es0010507
  • Wang Z. Dynamic botanical filtration system for indoor air purification. ProQuest Dissertations: Syracuse University; 2011.
  • Irga PJ, Paull NJ, Abdo P, et al. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Build Environ. 2017;115:281–290. doi: 10.1016/j.buildenv.2017.01.035
  • Morgan AL, Torpy FR, Irga PJ, et al. The botanical biofiltration of volatile organic compounds and particulate matter derived from cigarette smoke. Chemosphere. 2022;295:133942. doi: 10.1016/j.chemosphere.2022.133942
  • Meng X, Yan L, Liu F. A new method to improve indoor environment: combining the living wall with air-conditioning. Build Environ. 2022;216:108981. doi: 10.1016/j.buildenv.2022.108981
  • Yungstein Y, Helman D. Cooling, CO2 reduction, and energy-saving benefits of a green-living wall in an actual workplace. Build Environ. 2023;236:110220. doi: 10.1016/j.buildenv.2023.110220
  • Yeom S, Kim H, Hong T. Psychological and physiological effects of a green wall on occupants: a cross-over study in virtual reality. Build Environ. 2021;204:108134. doi: 10.1016/j.buildenv.2021.108134
  • Saaty TL. Decision making with dependence and feedback: the analytic network process. Vol. 4922. Pittsburgh: RWS publications; 1996. No. 2
  • Safian M, Ezwan E, Hadi A. The evolution of analytical hierarchy process (AHP) as a decision making tool in property sectors. Int Proc Econ Dev & Res. 2011;6:28.
  • Vaidya OS, Kumar S. Analytic hierarchy process: an overview of applications. Eur J Oper Res. 2006;169(1):1–29. doi: 10.1016/j.ejor.2004.04.028
  • Zhu GN, Hu J, Qi J, et al. An integrated AHP and VIKOR for design concept evaluation based on rough number. Advan Eng Inform. 2015;29(3):408–418. doi: 10.1016/j.aei.2015.01.010
  • Leal JE. AHP-express: a simplified version of the analytical hierarchy process method. MethodsX. 2020;7:100748. doi: 10.1016/j.mex.2019.11.021
  • Fontela E, Gabus A. Events and economic forecasting models. Futures. 1974;6(4):329–333. doi: 10.1016/0016-3287(74)90076-7
  • Liu PC, Lo HW, Liou JJ. A combination of DEMATEL and BWM-based ANP methods for exploring the green building rating system in Taiwan. Sustainability. 2020;12(8):3216. doi: 10.3390/su12083216
  • Gabus A, Fontela EJBGRC. World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Res Center, Geneva, Switzerland. 1972;1(8):12–14.
  • Wu WW, Lee YT. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Syst Appl. 2007;32(2):499–507. doi: 10.1016/j.eswa.2005.12.005
  • Tzeng GH, Chiang CH, Li CW. Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst Appl. 2007;32(4):1028–1044. doi: 10.1016/j.eswa.2006.02.004
  • Liu W, Huang Y, Sun Y, et al. Research on design elements of household medical products for rhinitis based on AHP. Math Biosci Eng. 2023;20(5):9003–9017. doi: 10.3934/mbe.2023395
  • Kritchanchai D, Wahab SN, Tan A, et al. An Analytical Hierarchy Process-based decision making for sustainable medical devices development. Logforum. 2022;18(4):481–493. doi: 10.17270/J.LOG.2022.768
  • Zhu TL, Li YJ, Wu CJ, et al. Research on the design of surgical auxiliary equipment based on AHP, QFD, and PUGH decision matrix. Math Prob Eng. 2022;2022:1–13. doi: 10.1155/2022/4327390
  • Chen Z, Zhang X, Lee J. Combining PCA-AHP combination weighting to prioritize design elements of intelligent wearable masks. Sustainability. 2023;15(3):1888. doi: 10.3390/su15031888
  • Wang N, Shi C, Kang X. Design of a disinfection and epidemic prevention robot based on fuzzy QFD and the ARIZ Algorithm. Sustainability. 2022;14(24):16341. doi: 10.3390/su142416341
  • Ocampo L, Jumao-As AM, Labrador JJ, et al. Transforming the means-end chain model of the QFD into interconnected hierarchical network structures for sustainable product design. Int J Sustainable Eng. 2021;14(4):552–573. doi: 10.1080/19397038.2021.1934182
  • Hu Y, Yu S, Qin S, et al. How to extract traditional cultural design elements from a set of images of cultural relics based on F-AHP and entropy. Multimedia Tools Appl. 2021;80(4):5833–5856. doi: 10.1007/s11042-020-09348-w
  • Liu K, Zhao J, Zhu C. Research on digital restoration of plain unlined silk gauze gown of Mawangdui Han Dynasty Tomb based on AHP and human–computer interaction technology. Sustainability. 2022;14(14):8713. doi: 10.3390/su14148713
  • Chen B, Hu X, Huo Y, et al. Research on recommendation method of product design scheme based on multi-way tree and learning-to-rank. Machines. 2020;8(2):30. doi: 10.3390/machines8020030
  • Karasan A, Ilbahar E, Cebi S, et al. Customer-oriented product design using an integrated neutrosophic AHP & DEMATEL & QFD methodology. Appl Soft Comput. 2022;118:108445. doi: 10.1016/j.asoc.2022.108445
  • Park BH, Ock YS, Chun DP, et al. Prioritize front-loading factors analysis for new product development: focus on automobile parts design stage. J Soc Korea Ind Syst Eng. 2019;42(4):31–38. doi: 10.11627/jkise.2019.42.4.031
  • Paduloh P, Muhendra R. Overheat protection for motor crane hoist using internet of things. Int J Comput Appl Technol. 2022;68(4):332–344. doi: 10.1504/IJCAT.2022.125181
  • Neira-Rodado D, Ortíz-Barrios M, De la Hoz-Escorcia S, et al. Smart product design process through the implementation of a fuzzy Kano-AHP-DEMATEL-QFD approach. Appl Sci. 2020;10(5):1792. doi: 10.3390/app10051792
  • Mei YANG, Yang-Fan CONG, Xue-Rui LI. Comprehensive evaluation and optimization method of products for the elderly based on FAHP and TOPSIS——a case study on the smart bracelet for the elderly. J Graphics. 2020;41(3):469.
  • Lohan S, Cramariuc O, Malicki Ł, et al. Analytic hierarchy process for assessing e-health technologies for elderly indoor mobility analysis. EAI Endorsed Trans On Smart Cities. 2015;1(3):54–57.
  • Ahmed F, Rashid A. Framework to select vital product design methodologies using a multi-criteria decision tool for an industry segment. Adv Mater Process Technol. 2021;7(2):343–351. doi: 10.1080/2374068X.2020.1783945
  • Liu M, Zhu X, Chen Y, et al. Evaluation and design of dining room chair based on analytic hierarchy process (AHP) and fuzzy AHP. BioResources. 2023;18(2):2574. doi: 10.15376/biores.18.2.2574-2588
  • Çıkmak S, Kesici B. Analysis of barriers to the adoption of circular supply chain management: a case study in the air conditioning industry. J Ind Prod Eng. 2023;40(4):287–300. doi: 10.1080/21681015.2023.2194302
  • Wei Z, Nie J. Research on intelligent design mechanism of landscape lamp with regional cultural value based on interactive genetic algorithm. Concurr Comput Pract Exp. 2021;33(16):e6273. doi: 10.1002/cpe.6273
  • Sugiono S, Putra AS, Renaldi P, et al. A new concept of product design by involving emotional factors using EEG: a case study of computer mouse design. Acta Neuropsychologica. 2021;19(1):63–80. doi: 10.5604/01.3001.0014.7021
  • Lin YC, Chen T. A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: smart backpack design as an example. Proc Inst Mech Eng Part B. 2020;234(6–7):1044–1056. doi: 10.1177/0954405419896117
  • Singh R, Avikal S, Rashmi R, et al. A Kano model, AHP and TOPSIS based approach for selecting the best mobile phone under a fuzzy environment. Int J Qual Reliab Manage. 2020;37(6/7):837–851. doi: 10.1108/IJQRM-01-2020-0022
  • Liu Q, Chen J, Wang W, et al. Conceptual design evaluation considering confidence based on Z-AHP-TOPSIS method. Appl Sci. 2021;11(16):7400. doi: 10.3390/app11167400
  • Pu L, Hong Y, Mu H. Conceptual fuzzy AHP Model for perception analysis of a Children’s raincoat. Fibres & Textiles In Eastern Europe. 2020:140.
  • Quan H, Li S, Wei H, et al. Personalized product evaluation based on GRA-TOPSIS and Kansei engineering. Symmetry. 2019;11(7):867. doi: 10.3390/sym11070867
  • Özsoy HÖ. Evaluation of 3D modeling programs for industrial design use. Politeknik Dergisi. 2020;23(4):1153–1166. doi: 10.2339/politeknik.481241
  • Nghiem TBH, Chu TC. Evaluating sustainable conceptual designs using an AHP-based ELECTRE I method. Int J Inf Technol Decis Mak. 2021;20(4):1121–1152. doi: 10.1142/S0219622021500280
  • Tan YS, Chen H, Wu S. Evaluation and implementation of environmentally conscious product design by using AHP and grey relational analysis approaches. Ekoloji. 2019;28(107):857–864.
  • Batwara A, Sharma V, Makkar M, et al. An empirical investigation of green product design and development strategies for Eco Industries using kano Model and fuzzy AHP. Sustainability. 2022;14(14):8735. doi: 10.3390/su14148735
  • Hichem A, Mohyeddine S, Abdessamed K. Benchmarking framework for sustainable manufacturing based MCDM techniques. Benchmarking: Int J. 2022;29(1):87–117. doi: 10.1108/BIJ-08-2020-0452
  • Dîrja M, Dumitraș A. Relevance of soil heavy metal XRF screening for quality and landscaping of public playgrounds. Toxics. 2023;11(6). doi: 10.3390/toxics11060530
  • Lin MC, Wang CC, Chen MS, et al. Using AHP and TOPSIS approaches in customer-driven product design process. Comput Ind. 2008;59(1):17–31. doi: 10.1016/j.compind.2007.05.013
  • Zhang HX. The analysis of the Reasonable Structure of Water Conservancy Investment of Capital Construction in China by AHP method. Water Resour Manage. 2009;23(1):1–18. doi: 10.1007/s11269-008-9261-9
  • Saaty TL. What is the analytic hierarchy process? Berlin Heidelberg: Springer; 1988. pp. 109–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.