177
Views
7
CrossRef citations to date
0
Altmetric
Special Issue: 3rd MICCAI workshop on Bio- Imaging and Visualization for Patient-Customized Simulations

Automatic liver tumour segmentation in CT combining FCN and NMF-based deformable model

, , , , &
Pages 468-477 | Received 15 Nov 2017, Accepted 23 Jun 2018, Published online: 27 Jun 2019

References

  • Baâzaoui A, Barhoumi W, Ahmed A, Zagrouba E. 2017. Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing. IRBM. 38(2):98–108.
  • Becker M, Magnenat-Thalmann N. 2014. Deformable models in medical image segmentation. book chapter. Springer, London. p. 81–106.
  • Ben-Cohen A, Diamant I, Klang E, Amitai M, Greenspan H 2016. Fully convolutional network for liver segmentation and lesions detection. In: Deep learning and data labeling for medical applications - first international workshop, LABELS 2016, and second international workshop, DLMIA 2016, held in conjunction with MICCAI 2016, Athens, Greece, 2016 Oct 21, Proceedings. p. 77–85.
  • Boas FE, Kamaya A, Do B, Desser TS, Beaulieu CF, Vasanawala SS, Hwang GL, Sze DY. 2015. Classification of hypervascular liver lesions based on hepatic artery and portal vein blood supply coefficients calculated from triphasic CT scans. J Digit Imaging. 28(2):213–223.
  • Chan TF, Esedoglu S, Nikolova M. 2006. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math. 66(5):1632–1648.
  • Chen B, Chen Y, Yang G, Meng J, Zeng R, Luo L 2015. Segmentation of liver tumor via nonlocal active contours. In: Image processing (ICIP), IEEE international conference on. IEEE Quebec City, Canada. p. 3745–3748.
  • Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Armbruster M, Hofmann F, D’Anastasi M, et al. 2016. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Medical image computing and computer-assisted intervention - MICCAI 2016-19th international conference, Athens, Greece, 2016 Oct 17–21, Proceedings, Part II. p. 415–423.
  • Foruzan AH, Chen Y. 2016. Improved segmentation of low-contrast lesions using sigmoid edge model. Int J Comput Assist Radiol Surg. 11(7):1267–1283.
  • Gao M, Chen H, Zheng S, Fang B 2016. A factorization based active contour model for texture segmentation. In: 2016 IEEE international conference on image processing, ICIP 2016, Phoenix, AZ, USA, 2016 Sept 25–28, p. 4309–4313.
  • Goldstein T, Osher S. 2009. The split bregman method for l1-regularized problems. SIAM J Imaging Sci. 2(2):323–343.
  • Götz M, Heim E, März K, Norajitra T, Hafezi M, Fard N, Mehrabi A, Knoll M, Weber C, Maier-Hein L, et al. 2016. A learning-based, fully automatic liver tumor segmentation pipeline based on sparsely annotated training data. In: Medical imaging 2016: image processing, San Diego, California, USA, 2016 Feb 27, p. 97841I.
  • Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. 2017. Brain tumor segmentation with deep neural networks. Med Image Anal. 35:18–31.
  • Heimann T, Van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G. 2009. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging. 28(8):1251–1265.
  • Hu P, Wu F, Peng J, Liang P, Kong D. 2016. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 61(24):8676.
  • Huang W, Yang Y, Lin Z, Huang GB, Zhou J, Duan Y, Xiong W 2014. Random feature subspace ensemble based extreme learning machine for liver tumor detection and segmentation. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th annual international conference of the IEEE, IEEE Chicago, USA. p. 4675–4678.
  • Huynh HT, Karademir I, Oto A, Suzuki K. 2014. Computerized liver volumetry on mri by using 3D geodesic active contour segmentation. Am J Roentgenol. 202(1):152–159.
  • Krinidis S, Chatzis V. 2010. A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process. 19(5):1328–1337.
  • Kumar YR, Muthukrishnan NM, Mahajan A, Priyanka P, Padmavathi G, Nethra M, Sneha R, Thakur MH. 2016. Statistical parameter-based automatic liver tumor segmentation from abdominal CT scans: a potiential radiomic signature. Procedia Comput Sci. 93:446–452.
  • Lebrun M. 2012. An analysis and implementation of the BM3D image denoising method. Am Soc Mech Eng. 2(25):175–213.
  • Li BN, Chui CK, Chang S, Ong SH. 2012. A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images. Expert Syst Appl. 39(10):9661–9668.
  • Li C, Wang X, Eberl S, Fulham M, Yin Y, Chen J, Feng DD. 2013. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Trans Biomed Eng. 60(10):2967–2977.
  • Li W, Jia F, Hu Q. 2015. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J Computer Commun. 3(11):146–151.
  • Li Y, Hara S, Shimura K 2006. A machine learning approach for locating boundaries of liver tumors in CT images. In: 18th international conference on pattern recognition (ICPR 2006), 2006 Aug 20–24, Hong Kong, China, p. 400–403.
  • Litjens GJS, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Jawm VDL, van Ginneken B, Sánchez CI. 2017. A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88.
  • Luo S, Li X, Li J. 2014. Review on the methods of automatic liver segmentation from abdominal images. J Computer Commun. 2(02):1–7.
  • Moltz JH, Bornemann L, Dicken V, Peitgen HO 2008. Segmentation of liver metastases in CT scans by adaptive thresholding and morphological processing. In: Workshop on 3D segmentation in the clinic: a grand challenge II. Liver tumor segmentation challenge, MICCAI, New York, USA, p. 415–423.
  • Priyadarsini S, Selvathi D. 2016. Active contour with contrast enhancement for automatic liver and tumor segmentation. J Med Imaging Health Inform. 6(7):1553–1558.
  • Ray S, Hagge R, Gillen M, Cerejo M, Shakeri S, Beckett L, Greasby T, Badawi RD. 2008. Comparison of two-dimensional and three-dimensional iterative watershed segmentation methods in hepatic tumor volumetrics. Med Phys. 35(12):5869–5881.
  • Ronneberger O, Fischer P, Brox T 2015. U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention - MICCAI 2015-18th international conference, Munich, Germany, 2015 Oct 5–9, Proceedings, Part III. p. 234–241.
  • Sajith AG, Hariharan S 2015. Spatial fuzzy C-means clustering based segmentation on CT images. In: Electronics and communication systems (ICECS), 2015 2nd international conference on. IEEE Tamilnadu, India. p. 414–417.
  • Shelhamer E, Long J, Darrell T. 2017. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 39(4):640–651.
  • Shen D, Wu G, Suk HI. 2017. Deep learning in medical image analysis. Annu Rev Biomed Eng. 19(1):221–248.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR), San Diego, USA.
  • Smeets D, Loeckx D, Stijnen B, De DB, Vandermeulen D, Suetens P. 2010. Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Med Image Anal. 14(1):13–20.
  • Stalling D, Westerhoff M, Hege HC. 2005. Amira: a highly interactive system for visual data analysis. Visualization Handb. 27:749–767.
  • Stawiaski J, Decencière E, Bidault F. 2008. Interactive liver tumor segmentation using graph-cuts and watershed. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), New York, USA.
  • Vivanti R, Ephrat A, Joskowicz L, Lev-Cohain N, Karaaslan OA, Sosna J 2015. Automatic liver tumor segmentation in follow-up CT scans: preliminary method and results. In: Patch-based techniques in medical imaging – first international workshop, Patch-MI 2015, held in conjunction with MICCAI 2015, Munich, Germany, 2015 Oct 9, Revised Selected Papers, p. 54–61.
  • Wels M, Carneiro G, Aplas A, Huber M, Hornegger J, Comaniciu D 2008. A discriminative model- constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-d MRI. In: Medical image computing and computer-assisted intervention - MICCAI 2008, 11th international conference, New York, NY, USA, 2008 Sept 6–10, Proceedings, Part I. p. 67–75.
  • Wong D, Liu J, Fengshou Y, Tian Q, Xiong W, Zhou J, Qi Y, Han T, Venkatesh S, Wang S 2008. A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints. In: Workshop on 3D segmentation in the clinic: a grand challenge II. Liver tumor segmentation challenge, MICCAI, New York (USA), p. 159, Vol. 41.
  • Wu W, Wu S, Zhou Z, Zhang R, Zhang Y. 2017. 3D liver tumor segmentation in CT images using improved fuzzy C-means and graph cuts. Biomed Res Int. 2017:1–11.
  • Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 7(3):359–369.
  • Yuan J, Wang D, Cheriyadat AM. 2015. Factorization-based texture segmentation. IEEE Trans Image Process. 24(11):3488–3497.
  • Zhang J, Xia Y, Xie Y, Fulham M, Feng D. 2017. Classification of medical images in the biomedical literature by jointly using deep and handcrafted visual features. IEEE J Biomed Health Inform. PP(99): 1–11.
  • Zhang K, Zhang L, Lam KM, Zhang D. 2016. A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans Cybernet. 46(2):546–557.
  • Zhang X, Tian J, Xiang D, Li X, Deng K 2011. Interactive liver tumor segmentation from CT scans using support vector classification with watershed. In: International conference of the IEEE engineering in medicine and biology society, Boston, USA. p. 6005–6008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.